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Abstract⎯ Richardson extrapolation is a numerical procedure which enables us to 
enhance the accuracy of any convergent numerical method in a simple and powerful way.  

In this paper we overview the theoretical background of Richardson extrapolation in 
space and time, where two numerical solutions, obtained on a coarse and a fine space-
time grid are combined by a suitable weighted average. We show that when the Crank-
Nicolson method is appropriately combined with this extrapolation technique for the 
solution of the one-dimensional advection equation, then the order of accuracy increases 
by two both in time and space. The theoretically derived consistency order and the 
necessity of the smoothness conditions for the exact solution and for the advection 
velocity are illustrated by numerical experiments, performed by the advection module of 
the Danish Eulerian Model (DEM).  
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1. Introduction 

L.F. Richardson proposed extrapolation as a powerful tool to accelerate the 
convergence of a sequence of approximations (see Richardson, 1911, 1927). 
The main idea is to apply the same convergent numerical algorithm, depending 
on some parameter, by using two different values of this parameter, and 
combine the obtained numerical solutions to eliminate the leading error term and 
achieve better accuracy. Its main area of application is the numerical solution of 
time-dependent ordinary differential equations (see e.g., Marchuk and Shaidurov 
1983; Bulirsch and Stoer, 1966; Bader and Deuflhard, 1983, Zlatev et al., 2017). 
In this case the problem is solved by the same numerical method using two 
different time-step sizes, and the obtained numerical solutions are combined at 
each time layer of the coarser grid. In this manner, under certain smoothness 
conditions, the order of the numerical scheme increases by one. (We remark that 
by using more than two numerical solutions, even higher order accuracy can be 
achieved.) In Faragó et al. (2013) it is proved that the combination of any 
diagonally implicit Runge–Kutta method with active Richardson extrapolation is 
consistent and zero-stable, and consequently it is convergent. In Zlatev et al. 
(2012), the stability of the θ-method combined with the active Richardson 
extrapolation is investigated on a fixed mesh, and among others it is shown that 
the combined method is strongly A-stable for the values of θ in the range [2/3, 
1]. The extrapolated solution is only calculated at the nodes of the coarse grid. 
Roache and Knupp (1993) extended the technique so that the extrapolated 
solution can also be calculated at the fine grid points. Interesting details about 
some of the scientists, who initiated the work on different extrapolation methods 
(including here the Richardson extrapolation) can be found in Brezinski and 
Redivo Zaglia (1993). 

The idea of Richardson extrapolation can be applied during the numerical 
solution of partial differential equations (PDEs) as well. In the majority of the 
applications, the equations are first discretized in space, which results in a 
system of time-dependent ordinary differential equations (ODEs), and the 
Richardson extrapolation is applied with the aim of increasing the order of the 
time integration method only (see e.g., Havasi et al., 2013; Mona et al., 2015). 
However, it is also possible to apply this technique with spatial and temporal 
step sizes refined simultaneously, and the numerical solutions obtained on the 
coarse and fine space-time grids are then combined with appropriate weight 
coefficients. This procedure for the case of one spatial dimension has been 
elaborated in Richards (1997). In this paper we apply the idea of Richardson 
extrapolation in space and time to the one-dimensional advection equation, 
when the underlying space-time discretization method is the Crank–Nicolson 
scheme.  

The structure of the paper is as follows. In Section 2, we present the 
general idea of Richardson extrapolation as a convergence acceleration method 
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and go into more details about the application of this idea during the numerical 
solution of ODEs. In Section 3, the Richardson extrapolation in space and time 
is presented for the numerical solution of PDEs with one spatial dimension as 
proposed by Richards (1977), who specified the condition of a proper grid 
refinement. In Section 4, this idea is applied to the one-dimensional advection 
equation when solved by the Crank–Nicolson scheme as an underlying method. 
We will see that in this particular application, the gain in the accuracy is even 
better than expected, if certain smoothness conditions are satisfied by the exact 
solution of the advection problem and by the advection velocity. Our theoretical 
results are illustrated with three numerical experiments, performed by the 
advection module of UNI-DEM (the Unified Danish Eulerian Model).  

2. The principle of Richardson extrapolation 

Consider a numerical algorithm depending on parameter τ, which tends to the 
exact value A* when τ tends to zero. Typically, τ denotes the mesh size of the 
discretization. If the method is convergent to the order p, then by solving the 
problem with the parameter values τ1 = τ and τ2 = τ/2, the equalities  

 
 )()( 1+∗ +=− pp OKAA τττ , (1) 

 
and 
 
 )()2/()2/( 1+∗ +=− pp OKAA τττ , (2) 

 
hold, where the quantity K is independent of the value of the parameter τ. 
During Richardson extrapolation, the two numerical solutions are combined by 
suitable weight coefficients according to the formula 
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see Richardson (1911, 1927). 

This procedure is rather general, and it can be applied in combination with 
any convergent numerical method. It is primarily used during the numerical 
solution of Cauchy problems for ordinary differential equations, where A(τ) 
denotes the numerical solution of the problem by using time step τ.  Consider the 
Cauchy problem 
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where MMf ℜ→ℜ +1: , My ℜ∈0  is a given initial vector, and the unknown function 
y is of type Mℜ→ℜ . Let us define the following two grids on the time interval 
[0,T]:  
 
 { }tn Nnnt ,...,1,0,: ===Ω ττ , (5) 
 
and 
 
 { }tk Nkkt 2,...,1,0,2/:2/ ===Ω ττ , (6) 
 
with Nt· τ = T. Denote by z(tn) the numerical solution obtained at time tn of the 
coarse grid, and w(tn) that obtained at the same time layer tn on the fine grid. 
(Note that in the second case twice as many steps are taken than in the first 
case.) Then, following the principle of Richardson extrapolation, the 
approximation  
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provides a numerical solution, accurate to the order p+1, in case the exact 
solution y(t) is p+1 times continuously differentiable. During the so-called 
passive Richardson extrapolation, the combined solution is never used during 
the further computations, while in the case of the active Richardson 
extrapolation always the combined solution is propagated, both on the coarse 
grid and on the fine grid.  

3. Richardson extrapolation in space and time  

The above idea can be extended to PDEs depending on time and on one space 
dimension as follows. Two space-time grids are defined on the solution domain 
0 ≤ x ≤ L, 0 ≤ t ≤ T of the problem.  Denote by Δx and Δt the spatial and 
temporal step sizes of the fine grid, respectively. On the coarse grid, the step 
sizes mΔx and mβΔt will be used by certain integers m ≥ 1 and β ≥ 1, such that 
both grids cover the solution domain. 

One can prove by using some simplifying assumptions (Richards, 1997) 
that the exponent β needs to satisfy a certain requirement in order that higher 
order of accuracy can be achieved, provided that the exact solution is 
sufficiently smooth. Let us fix a grid point x~  which is an element of both the 
fine and the coarse spatial grid, and denote the truncation error of the method at 
point ( x~ , tn) = ( x~ , nΔt) by ET( x~ , tn, Δx, Δt). For a numerical method that has 
order px in space and order pt in time, the truncation error can be given as  
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Here qx and qt are integers for which qx > px and qt > pt, and Kx and Kt depend on 
the problem and on the solution, but are independent of Δx and Δt. One can 
show that on a time interval of length Δt, an error of the size ΔtET arises. Denote 
by u( x~ ,t) the exact solution of the problem at the point ( x~ , t), by n

fy  the 

numerical solution on the fine grid, and by n
cy  the numerical solution on the 

coarse grid, both at the point ( x~ , nΔt).  Then the error arising during the 
computation of u on the fine grid, by the assumption that we use the exact 
solution at time n·Δt, can be written as  
 
 ))(,)(()()())1(,~( 111 +++ ΔΔΔ+Δ+ΔΔ=−Δ+ txtx qqp

t
p

x
n
f txtOtKxtKytnxu . (9) 

 
The error of the coarse grid solution after a time step of length mβΔt is  
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The error on the fine grid at time ( βmn + )·Δt can be expanded as follows, by 
assuming that the errors of successive time steps add up, moreover, that the 
coefficients Kx and Kt do not change: 
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During Richardson extrapolation in space and time, a linear combination of the 

numerical solutions 
βmn

cy +  and 
βmn

fy + is determined at the points of the coarse grid 
as 
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where γ1 and γ2 are real constants, to be chosen appropriately.  By substitution 
from Eqs. (10) and (11) we are led to the equality 
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Our aim is to eliminate the leading error terms, containing the coefficients Kx 
and Kt. Obviously, this can only be achieved if  
 
 ;121 =+ γγ  (14) 
 
 021 =+ +ββ γγ xpmm , (15) 
 
and 
 
 .0)1(

21 =+ +tpmm ββ γγ  (16) 
 
Subtracting (16) from (15), one can easily see that 
 
 0)( )1(

2 =− ++ tx pp mm ββγ  (17) 
 
should hold, which in case of  02 ≠γ  can only be satisfied if )1( +=+ tx pp ββ , 
i.e., if tx pp /=β . 

Thus, it has been shown that provided the underlying space-time 
discretization method has order px in space and order pt in time, then, for the 
increase of the order of accuracy, β should be chosen such that it is equal to the 
ratio of px and pt. The convergence order of the method obtained in this manner 
is increased to ))(,)(,)(,)()(( 122 ++ ΔΔΔΔΔΔ ttxx qpqp ttxtxtO , which corresponds to a 
method with truncation error of ))(,)(,)(,)(( 1 ttxx qpqp ttxxtO ΔΔΔΔΔ + . 

4. Application to the 1D advection equation  

In this section we present an application of the above approach. Consider the 
one-dimensional advection equation 
 
 ucu xt ∂−=∂ ,  ],0[ Lx ∈ , ],[ 0 Ttt ∈  (18) 

 
with appropriate initial and boundary conditions, where c = c(x, t). Assume that 
we want to solve this problem with the Crank–Nicolson method 
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As it is known, the Crank–Nicolson method has second order both in space and 
time, i.e., px = pt = 2 (Strikwerda, 2004). According to the previous section, the 
proper choice of β is 1/ == tx ppβ . Consequently, if the stepsize of the coarse 
grid is twice the stepsize xΔ  of the fine grid (i.e., m = 2), then tΔ  should also by 
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multiplied by 2 to generate the coarse time grid. Further, we need the 
coefficients γ1 and γ2. From condition (15), by substitution of the values m = 2, 
px = 2 and β = 1, the equation 
 
 04 21 =+ γγ  
 
is obtained, from which, in view of Eq. (14), we get the coefficients γ1 = –1/3, 
and γ2 = 4/3. (Note that these weights are the same as those applied when 
Richardson extrapolation is performed only in time for a method of order 2.) 
Moreover, since Δt = Δx, therefore by Eq. (13) one can expect that the order of 
accuracy increases by one, both in space and time. However, in this case we get 
an even better acceleration, as it is shown by direct expansion into Taylor series 
in Zlatev et al., 2011: If the advection velocity c = c(x, t) is twice continuously 
differentiable both by x and t, and the exact solution u(x, t) is four times 
continuously differentiable both by x and t, then the combination of the Crank–
Nicolson method with the active Richardson extrapolation has order four both in 
space and time for problem Eq. (18). (For details of the proof see the given 
reference.) 

4.1. Numerical experiments 

Our theoretical results were tested by using different parameter choices and 
initial conditions together with periodic boundary conditions in the advection 
problem Eq. (18). Note that in order that the active Richardson extrapolation can 
be applied, at all time layers of the coarse grid interpolation is needed to the fine 
grid so that we have the combined solution on the fine grid before the next time 
step. 

4.2. Test problem 1 

In the first experiment performed by the advection module of UNI-DEM, the 
following parameter values were specified: L = 50000000, t0 = 43200,  
T = 129600, c(x, t) = 320, and we used the initial function 
 

 )991(104679.1)(
212 )10000000(1012

0
−− −

+⋅= xexu . 
 
This is a smooth function with sharp gradients, see Fig. 1.  
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Fig. 1. The initial function in Test problem 1. 

 
 
The exact solution has the form u(x, t) = u0(x – 320(t – 43200)), which has 

the same smoothness property as the initial function. Table 1 shows the global 
errors obtained by spatial and time steps, halved several times simultaneously. 
When the Crank–Nicolson method is applied alone, the error is reduced by a 
factor of four to a good approximation, i.e., the method behaves as a fourth-
order one, as expected. Moreover, when combined with the active Richardson 
extrapolation, the errors roughly decrease by a factor of 16, so the theoretically 
obtained fourth-order convergence is obtained. 

 
 
 
Table 1. Global errors obtained in Test problem 1 by the Crank–Nicolson method alone 
(CN) and by its combination with the active Richardson extrapolation (CN + RE). Nt: the 
number of time steps; Nx: the number of spatial steps. In parentheses the factors are given 
by which the global error decreased in comparison with the error in the previous row. 

Nt Nx CN CN + RE 

168 160 7.373E-01 1.454E-01 

336 320 4.003E-01 (1.842) 1.741E-02 (8.350) 

672 640 1.254E-01 (3.142) 1.224E-03 (14.220) 

1344 1280 3.080E-02 (4.135) 7.730E-05 (15.837) 

2688 2560 7.765E-03 (3.967) 4.841E-06 (15.970) 

5376 5120 1.954E-03 (3.974) 3.026E-07 (15.999) 

10752 10240 4.892E-04 (3.994) 1.891E-08 (16.004) 

21504 20480 1.224E-04 (3.999) 1.181E-09 (16.011) 
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4.3. Test problem 2 

In this experiment, the parameters were chosen as L = 2π, t0
 = 0, T = 2π, 

c(x, t) = 0.5, and the initial function was the highly oscillatory function shown in 
Fig. 2:  
 
 ))10sin(99100(104679.1)( 12

0 xxu +⋅= . 
 
 
 
 

 
Fig. 2. The initial function in Test problem 2. 

 
 
 
 
 
 
The exact solution is u(x, t) = u0(x – 0.5t). 

The global errors are shown in Table 2. With the Crank–Nicolson method 
applied alone, similar results were obtained as before. However, when combined 
with the active Richardson extrapolation, the convergence is slower than fourth 
(but faster than third) order. The reason for this is probably the fact that the 
third-order interpolation polynomial, applied for interpolation of the coarse grid 
solution to the fine grid, cannot be applied at the boundary of the space domain, 
so here a second-order formula was used.   
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Table 2. Global errors obtained in Test problem 2 by the Crank–Nicolson method alone 
(CN) and by its combination with the active Richardson extrapolation (CN + RE). Nt: the 
number of time steps; Nx: the number of spatial steps. In parentheses the factors are given 
by which the global error decreased in comparison with the error in the previous row 

Nt Nx CN CN + RE 

168 160 7.851E-01 1.560E-02 

336 320 2.160E-01 (3.635) 1.227E-03 (12.713) 

672 640 5.317E-02 (4.062) 1.072E-04 (11.432) 

1344 1280 1.327E-02 (4.007) 1.150E-05 (9.333) 

2688 2560 3.319E-03 (3.997) 1.193E-06 (9.641) 

5376 5120 8.299E-04 (4.000) 1.478E-07 (8.071) 

10752 10240 2.075E-04 (4.000) 1.618E-08 (9.136) 

21504 20480 5.187E-05 (4.000) 1.965E-09 (8.233) 

 
 
 
 
 
 

4.4. Test problem 3 

In this case, the parameters of the first test problems were used with the 
exception that the initial function was changed to the following one: 
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see Fig. 3. This initial function is continuous, but its first derivative is 
discontinuous, and so none of the sufficient conditions for the fourth-order 
convergence of the combined method is satisfied. As Table 3 shows, the 
theoretically derived order is not obtained for any of the two methods, however, 
the Richardson extrapolated method is still more accurate.  
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Fig. 3. The initial function in Test problem 3. 

 
 
 
 
 
 
 
 

Table 3. Global errors obtained in Test problem 3 by the Crank–Nicolson method alone 
(CN) and by its combination with the active Richardson extrapolation (CN + RE). Nt: the 
number of time steps; Nx: the number of spatial steps. In parentheses the factors are given 
by which the global error decreased in comparison with the error in the previous row 

Nt Nx CN CN + RE 

168 160 1.353E-01 4.978E-02 

336 320 7.687E-02 (1.760) 2.761E-02 (1.803) 

672 640 4.424E-02 (1.737) 1.551E-02 (1.780) 

1344 1280 2.555E-02 ( 1.732) 8.570E-03 (1.810) 

2688 2560 1.636E-02 (1.561) 4.590E-03 (1.867) 

5376 5120 1.051E-02 (1.552) 2.318E-03 (1.980) 

10752 10240 5.551E-03 (1.899) 1.188E-03 (1.951) 

21504 20480 2.921E-03 (1.900) 6.575E-04 (1.807) 
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5. Conclusion  

Richardson extrapolation is a powerful tool to accelerate the convergence of 
numerical methods, and it can be applied not only to ordinary differential 
equations, but also to partial differential equations. In the latter case we either 
use the extrapolation after space discretization, or we apply Richardson 
extrapolation in space and time. In this paper we presented how the latter 
method works on the one-dimensional advection equation when the underlying 
numerical scheme is the Crank–Nicolson method. Our numerical experiments 
confirmed the theoretically derived order increase, and showed that satisfying 
the smoothness conditions is important to get this high order convergence.  
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