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PREFACE 

The Hungarian Meteorological Service and the World Meteorological Organisation have 

organized Seminar for homogenisation and quality control in climatological databases for 

the 6th time. COST Action ES0601, Advances in Homogenisation Methods of Climate 

Series: an Integrated Approach (HOME) was the main sponsor and co-organizer this time.  

This Action makes regular and planned development of the homogenisation methods 

possible. The seminar was an open meeting giving a good occasion for information 

exchange between the participants of the HOME project and other researchers of 

homogenisation community. 

The 31 Seminar‟s presentations followed the structure of the COST Action. The 1st 

Working Group (WG1) deals with the inventory of homogenisation methods, and the 

preparation of a benchmark dataset for the other working groups, WG2 has a task of break 

point detection, WG3 the correction of time series and WG4 the work with the daily data.  

The last working group, WG5 deals with the recommendation of the best available 

homogenisation method. 

The organisational circumstances, topics and the high scientific level of 

presentations show a clear positive shift in the administrative and scientific development of 

homogenisation procedures. First, the data management issue appeared on the European 

level, officially. It is clear, that the development of data availability and common or at least 

comparable management methods are not a national tasks, but have to be solved on the 

international level with participation of national data holders and international donor 

organisation(s). Wide range of countries presented their homogenisation efforts during the 

seminar. Unfortunately, not all countries are able to develop, or even to adopt 

homogenisation methods by their own resources. Therefore, further support is required, 

especially for the countries without homogenized database. 

Secondly, many different meteorological parameters were objects of homogenisation 

procedures at the presentations. It is very positive, but the scientific basis needs further 

development and enlargement.  All measured meteorological parameters should be 

involved in the homogenisation on a climatologically and mathematically well established 

basis. 

Many daily based homogenisation methods were presented, which is very 

beneficial and have been among the recommendations since the very long time. 

Furthermore, the COST Action pays attention to the wider availability of homogenisation 

methods. 

We can detect many positive scientific and administrative features at the 

homogenisation procedures. The accent should be made on transboundary developments 

now.  Large international projects, like Climate Data Regional Climate Centre, South-

European Drought Management Centre, Climate of the Carpathian Region, etc. apply 

homogenisation methods, but they need further, practically applicable homogenisation 

procedure developments.  Our task is keeping these existing tendencies alive in the future, 

and in that case we can be optimistic. 

 

        Sándor Szalai 
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METHODOLOGICAL QUESTIONS OF SERIES COMPARISON 

Tamás Szentimrey 

Hungarian Meteorological Service, H-1525, P.O. Box 38, Budapest, Hungary, 

szentimrey.t@met.hu 

 

 

1. INTRODUCTION 

 

The aim of the homogenization procedures is to detect the inhomogeneities and to correct the 

series. In practice there are absolute and relative methods applied for this purpose. However 

the application of absolute methods is very problematic and hazardous since the separation of 

climate change signal and the inhomogeneity signal is essentially impossible. Relative 

methods can be applied if there are more station series given, which can be compared 

mutually. The methodology of comparison is related to the following questions: reference 

series creation, difference series constitution, multiple comparisons of series etc. These topics 

are very important for detection as well as for correction, because the efficient comparison of 

series can increase both the significance and the power. The development of efficient 

comparison methods can be based on the examination of the spatial covariance structure of 

data series. Consequently the statistical spatiotemporal modelling is also a key question of 

data series homogenization. The adequate comparison, break point detection and correction 

procedures are depending on the statistical model.  

 

 

2. GENERAL FORM OF ADDITIVE MODEL  

 

In case of relative methods a general form of additive model for more monthly series 

belonging to the same month in a small climate region can be written as follows, 

)()()()( ttIHEttX jjjj         .,n,, t,N ,,j  21;21  ,                  (1) 

where )(t  is the common and unknown climate change signal (temporal trend), jE  are the 

spatial expected values (spatial trend), )(tIH j  are the inhomogeneity signals and )(tj  are 

normal white noise series. The signal  t  is a fixed parameter without any assumption about 

the shape. The type of inhomogeneity  tIH  is in general a ‟step-like function‟ with unknown 

break points T  and shifts     01  TIHTIH , and   0nIH  is assumed in general. 

Consequently the expected values are, 

  )()()(E tIHEttX jjj         .,n,, t,N ,,j  21;21 . 

The inhomogeneity can be written as linear function of the shifts,     jjj ttIH νT
T , so from 

model (1) the following form can be obtained, 

  )()()( T ttEttX jjjjj   νT      .,n,, t,N ,,j  21;21  ,                (2) 

where  tjT  is the vector of one break point functions, and jν  is the vector of shifts at the 

break points. 



 2 

The above additive (linear) model (2) may be written also in vector form, 

       tttt ενTE1X           nt ,...,1                                                     (3) 

where         tXtXt N,.....,1

T X ,  NEE ,.....,1

T E ,       ttt NN

TT

11 ,..., TeTeT  , 

 TTT

1 ,.., Nννν  ,  vector 1  is identically one, and the normal distributed vector variables 

        C0ε ,,..,
T

1 Nttt N    nt ,...,1  are totally independent in time. The spatial 

covariance matrix C  may be an arbitrary covariance matrix which describes the spatial 

structure of the series and it can have a key role in the methodology of comparison. 

3. COMPARISON OF SERIES FOR DETECTION AND CORRECTION 

 

According to the model (1), (2), (3) the expected values of examined series are, 

  )()()(E tIHEttX jjj         .,n,, t,N ,,j  21;21  ,                         (4) 

that are covered with normal white noise series,  

        C0ε ,,.....,
T

1 Nttt N           nt ,...,1  , 

where the vector variables  tε  nt ,...,1  are totally independent in time, and matrix C  is 

the spatial covariance matrix between the stations. This station covariance matrix C  may 

have a key role in methodology of comparison of series.  

The aim of the homogenization procedure is to detect the inhomogeneities and to correct the 

series. During the procedure the series can be compared mutually and the role of series – that 

may be candidate or reference ones – is changing in the course of procedure. The reference 

series are not assumed to be homogeneous at the correct examinations! The significance and 

the power of the procedures can be defined according to the probabilities of type of errors. 

Type one error means the detection of false or superfluous inhomogeneity while type two 

error means neglecting some real inhomogeneity. 

The problem of comparison of series is related to the following questions: reference series 

creation, difference series constitution, multiple comparisons of series etc. These topics are 

very important for detection as well as for correction, because the efficient comparison of 

series can increase both the significance and the power. The development of efficient 

comparison methods can be based on the examination of the spatial covariance structure of 

data series. The maximum likelihood methods also take into account the mentioned spatial 

covariance structure (section 4.2). 

 

3.1 Difference series constitution 
 

At the examinations the main problem arises from the fact that the shape of the common 

climate change signal is unknown. Therefore so-called difference series are examined in order 

to filter out the climate change signal )(t .  

Let us use the following notations, )(tX j ,  ,N,,j  21N  is the chosen candidate series 

and the other series )(tX i ,  ji j \NN-   are the references.  

The simple difference series by pairs are,      tXtXtZ ijj    
ji -N .  

However the difference series constitution can be formulated in more general way as well, 

namely  
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     



Ji

ijijj tXtXtZ       ttIHtIH
jZ

i

ijij   
J

        
j-NJ              (5) 

with condition of 1
J


i

ji  for the weighting factors. As a result of the last condition, the 

unknown climate change signal )(t  has been filtered out. Consequently the inhomogeneities 

of candidate series )(tX j  can be detected and corrected by the examination of the difference 

series defined according to formula (5). Nevertheless the quality of the examination depends 

on the weighting factors. Furthermore the weighted sum of reference series  tX i

i

ji
J



 j-NJ   can be considered as created reference series for candidate series )(tX j . 

 

3.2 Simple weighting methods in practice 

 

In practice several simple weighting methods are used, i.e. simple arithmetic mean, or the 

calculation of weighting factors are based on the distances (inverse distance method) else on 

the correlations. For example at the SNHT method (Alexandersson, 1986) the following 

weighting is used for creation of reference series  tX i

i

ji
J

   j-NJ   belonging to the 

candidate series )(tX j  Nj , 





J

22

i

jijiji rr        
ji -NJ   ,    )(),(corr tXtXr ijji  .                                  (6)               

This latter weighting seems to be a correct mathematical formulation however it is without 

any theoretical basis. Moreover a generally used unrealistic assumption at the SNHT method 

is that the created reference series  
Ji

iji tX  is homogeneous. It is a false assumption 

because there is no reason to assume that    0
J


i

iji tIH , where )(tIH i   
ji -NJ   are 

the inhomogeneities of reference series )(tX i   
ji -NJ  . 

 

3.3 Optimal weighting and optimal difference series constitution 

 

If we want to obtain difference series with good mathematical properties first let us examine 

their structure according to the formula (5), 

     



Ji

ijijj tXtXtZ       ttIHtIH
jZ

i

ijij   
J

        
j-NJ              (7) 

where )(tX j  Nj  is the candidate series and the condition for the weighting factors is 

1
J


i

ji . In respect of the detection and correction of the candidate inhomogeneity )(tIH j  

there are some disturbing terms namely the mixed inhomogeneity of reference series 

 
Ji

iji tIH  and the noise term  t
jZ  which covers the signals. In order to increase the 

power of homogenization we have to intend to increase the signal to noise ratio of difference 

series that is equivalent with the minimization of the variance of noise term    jZ Z
j

varvar 

.  

The exact solution of this minimum problem is that the optimal weighting factors ji
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 
ji -NJ   written in vector form are, 

 












 






 1
1C1

cC1
cCλ

1

J,J

T

J,

1

J,J

T

J,

1

J,JJ,

1 j

jj
                                                                      (8) 

where J,jc  is the candidate-reference covariance vector and J,JC  is the reference-reference 

covariance matrix (Cressie, 1991; Szentimrey, 1999, 2007b). It can be seen that the 

covariance matrix C  uniquely determines the optimum weighting factors that minimize the 

variance, and the optimal difference series created in this manner can be applied efficiently 

for the detection and correction procedures. Changing the combinations of the reference series 

 tX i   ji -NJ   altogether  12 1 N  optimally weighted difference series can be 

constituted for a chosen candidate series )(tX j . 

Remark 1 

We call the attention to the connection with the spatial interpolation techniques built in GIS. 

The optimal weighting factors J,jλ  are just the ordinary kriging weighting factors when the 

candidate (predictand) )(tX j  is interpolated with reference series (predictors) 

 ji itX -NJ)(  .  Consequently, the optimal difference series are theoretically identical 

with the interpolation error series of ordinary kriging. Practically at the homogenization the 

necessary covariance matrix C  can be estimated on the basis of data series while the ordinary 

kriging methods built in GIS cannot efficiently use the data series for modelling the necessary 

statistical parameters (Szentimrey, 2007b). 

Remark 2 

The missing data completion or filling the gaps is also an interpolation problem at the 

homogenization. In accordance with the optimal difference series formula the following 

interpolation is suggested for missing value completion, 

    



J

ˆ

i

iijijj EtXEtX                                                                                 (9) 

where  tX j
ˆ  is the interpolated candidate series value and the values  tX i   ji -NJ   are 

the reference ones, the weighting factors ji  ji -NJ   are calculated according to (8), 

furthermore jE , iE  ji -NJ   are the spatial expected values by model (1). These optimal 

interpolation parameters minimize the RMSE, and this procedure is built in the MASH 

method for missing data completion (Szentimrey, 1999). 

Remark 3 

We mention if we substitute the generalized-least-squares estimation of unknown climate 

change signal  t  into the formula of linear regression between predictand )(tX j  
and 

predictors  ji itX -NJ)(   then also the above introduced optimal difference series is 

obtained with minimal variance (Szentimrey, 2007b).  

4. APPLICATION OF OPTIMAL DIFFERENCE SERIES FOR DETECTION AND 

CORRECTION 

 

As a consequence of the mixed inhomogeneities of difference series (7) we have to examine 

more optimal difference series in order to estimate and separate the appropriate 
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inhomogeneities for the candidate series. Various strategies and procedures can be 

implemented for this purpose. 

 

4.1 Iteration procedures 

 

A typical iteration procedure is the MASH algorithm (Szentimrey, 1999, 2007a). At this 

procedure a so-called optimal difference series system is examined during one iteration steps. 

The system elements are optimal difference series and created without common reference 

series what makes possible to detect and separate the inhomogeneities for the chosen 

candidate series. The outline of one iteration step is as follows. 

1. To choose the candidate series. 

2. Series comparison: constitution of optimal difference series system. 

3. Multiple break points detection for difference series based on hypothesis tests:  

    point estimations, confidence intervals. 

4. Estimation of shifts of difference series: point estimations, confidence intervals. 

5. Analysis of results: separation of break points and shifts for candidate series.  

6. Correction of candidate series based on the above results. 

During the procedure the iteration steps 1-6 are repeated and each series can be examined 

many times! As it can be seen the optimal difference series have a key role at this procedure. 

As regards the correction part we emphasize that almost all the methods use point estimation 

for the correction factors at the detected break points. The MASH procedure is an exception 

because the correction factors are estimated also on the basis of confidence intervals.  

 

4.2 Maximum Likelihood procedures 

 

Another possibility is to apply the maximum likelihood principle. Nevertheless in this case 

also certain optimal difference series are examined implicitly. But first let us see the structure 

of maximum likelihood estimation. 

We use again the model (2), (3) that is, 

       tttt ενTE1X           nt ,...,1                                                   (10) 

where the vector variables  tε  C0,N  nt ,...,1  are totally independent in time. We 

assume spatial covariance matrix C is known and inverse 1C exists.  

Then the basic minimum tasks to obtain the maximum likelihood estimations for various 

parameters in case of normal distribution are as follows. 

 

  i, Maximum likelihood estimation for   νE,,t , if   tT  (breaks) are given: 

 
               













n

t

tttttt
t

1

1T

,
min νTE1XCνTE1X

νE


 ,
          

 ii, Maximum likelihood estimation for     νTE ,,, tt , if the total number of break points K  

is given: 

   
               













n

t

tttttt
tt

1

1T

,
min νTE1XCνTE1X

νTE


 ,,
 

iii, Bayesian approach (model selection), penalized likelihood methods, 
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if  the total number of break points K  is also estimated: 

 
 

               

































K

n

t

pentttttt

t
t

K
1

1T

,

minmin νTE1XCνTE1X

νT
E




,
,

 

where the  penalty terms  IHKK ppenpen   depend on IHp  and IHp  is some „a priori‟ 

probability of break at each time  1.1  .,n,t  and each station. Some examples for „a priori‟ 

probabilities applied in practice:  
1

1

1 






e

e
pIH  (Akaike), 

1

1

1 






n

n
pIH   (Schwarz),    

1

1

1 









n

n

n

n

IH

n

n
p   (Caussinus-Lyazrhi). 

According to the minimum task i, this correction model can be applied if the break points 

 tT  .,n,t .1  are known and we want to give maximum likelihood estimations for the shifts 

ν . This estimation is the so-called generalized-least-squares estimation of the shifts. If we use 

the identity matrix I  instead of C  then we obtain the least-squares estimation which was 

implemented by Caussinus and Mestre, 2004. 

Returning to the relation of maximum likelihood estimation and the optimal difference series, 

let us consider the following special optimal difference series,  

     tXtXtZ i

Ni

jijj

j





-

         Nj ,...,1 ,  

where the weighting factors are optimal according to formula (8). 

Hereinafter let us denote the above optimal series in vector form: 

          ttZtZt N XΛIZ 
T

1 ,.....,       nt ,...,1 .   

Theorem (without proof) 

In case of arbitrary inhomogeneity terms    νT ,,...,1 ntt  : 

 
                













n

t

tttttt
t

1

1T

,
min νTE1XCνTE1X

E



 

             


 
n

t

cccc tttt
1

1T
νTΛIZCνTΛIZ Z                                      (11) 

where     ZZZ  ttc  and      TTT  ttc   are centered values,  

and 1

ZC  is a generalized inverse of ZC that is the covariance matrix of  tZ .

 
The concept of generalized inverse means, that ZZZZ CCCC 1 , in spite of the fact that ZC is 

a singular matrix since the optimal difference series    NjtZ j ,...,1  are linearly dependent. 

Essentially the formula (11) can be obtained by the substitution of the generalized-least-

squares estimations of   E,t . 

As a consequence of this theorem the minimum tasks i, ii, iii, can be rewritten also with the 

optimal difference series  tZ . 

  i, Maximum likelihood estimation for ν ,  if   tT  (breaks) are given: 
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             












n

t

cccc tttt
1

1T
min νTΛIZCνTΛIZ Zν

            

 ii, Maximum likelihood estimation for   νT ,t ,  if the total number of break points K  is 

given: 

 
             













n

t

cccc tttt
t

1

1T
min νTΛIZCνTΛIZ Z

νT ,
 

iii, Bayesian approach (model selection), penalized likelihood methods, 

if  the total number of break points K  is also estimated: 

 
              























K

n

t

cccc pentttt
tK

1

1T
minmin νTΛIZCνTΛIZ Z

νT ,
 

 

CONCLUSION 

 

The solutions of the minimum tasks for ν  (i, ii, iii,) and  tT  (ii, iii,) are functions of the 

optimal difference series    ntt ,...,1Z . That means the maximum likelihood methods also 

perform series comparison and examine implicitly optimal difference series! 
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Abstract 

 
Quality control and homogenization has to be undertaken prior to any data analysis in order to 

eliminate any erroneous values and inhomogeneities in time series. In this work we describe and then 

apply our own approach to data quality control, combining several methods: (i) by applying limits 

derived from interquartile ranges (ii) by analyzing difference series between candidate and 

neighbouring stations and (iii) by comparing the series values tested with “expected” values – 

technical series created by means of statistical methods for spatial data (e.g. IDW, kriging).  

Because of the presence of noise in series, statistical homogeneity tests render results with some 

degree of uncertainty. In this work, the use of various statistical tests and reference series made it 

possible to increase considerably the number of homogeneity test results for each series and thus to 

assess homogeneity more reliably. Inhomogeneities were corrected on a daily scale. 

These methodological approaches are demonstrated by use of the daily data of various 

meteorological elements measured in the area of the Czech Republic. Series were processed by means 

of developed ProClimDB and AnClim software (www.climahom.eu). 

 

INTRODUCTION 

In recent years considerable attention has been devoted to the analysis of daily data. Prior 

to analysis, the need to homogenize data and check their quality arises (Brandsma, 2000, 

Vincent et al. 2002, Wijngaard et al. 2003, Petrovic 2004, Della-Marta 2006 and others). 

Several kinds of problem have to be taken into consideration in the course of data processing,. 

These involve selection of a proper method for homogenization with regard to the data used, 

i.e. fulfilling all the conditions necessary to applying selected tests of relative homogeneity 

(e.g. normal distribution), creation of reference series (defining selection criteria), adjustment 

of inhomogeneities revealed, completion of missing values, and others. To date, no widely 

accepted homogenization approach has appeared that could be generalized and applied to a 

wider range of meteorological elements and different climatic regions. However, such 

approaches are needed. The creation of a general method of homogenization is also the main 

goal of the ongoing COST project ES0601, planned to culminate in 2011. 

Because of presence of noise in series, statistical homogeneity tests render results with 

some degree of uncertainty. In this work, the use of various statistical tests and types of 

reference series made it possible to increase considerably the number of homogeneity tests 

results for each series tested and thus to assess homogeneity more reliably.  

Considering quality control, the lack of a generally accepted methodology is even more 

profound than in the case of homogenization. Without treating outliers, homogenization and 

analysis may render misleading results. We therefore devoted consierable time to the 
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methodology of detecting outliers, something that could moreover be automated to process 

large datasets of daily (subdaily) values. 

In terms of this work, processing included the following steps: detection, verification and 

possible correction of outliers, creation of reference series, homogeneity testing (various 

homogeneity tests), determination of inhomogeneities in the light of test results and metadata, 

adjustment of inhomogeneities and filling in missing values (Fig. 1). 

 

 
Figure. 1. Scheme of quality control and homogenization process 

 

 

DESCRIPTION OF THE DATASET EMPLOYED 

Quality control and homogenization was performed on the daily values for all the basic 

meteorological elements in the area of the Czech Republic. This paper concentrates especially 

upon air temperature, precipitation, water vapour pressure and wind speed. The study covers 

the period 1961-2007; measurements before 1961 will be subject to processing in the near 

future.  

Mean minimum distance between climatological stations (measuring air temperature, 

water vapour pressure, wind speed, sunshine duration, etc.) was 13.3 km (some 270 stations 

in the area of the Czech Republic are available) while for precipitation stations the mean 

minimum distance was 6.5 km (787 stations). Fig. 2 shows the spatial distribution of the 

climatological and precipitation stations involved. 
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Figure. 2. Spatial distribution of climatological (blue squares) and precipitation (red circles) stations 

 

The altitude of the stations ranges from 150 to 1490 m.a.s.l. Ten stations are at an altitude 

of more than 1000 m, while median altitude stands at 410 m.a.s.l for climatological stations 

and 415 m.a.s.l for precipitation stations.  

QUALITY CONTROL 

Prior any homogenization and data analysis, data quality control has to be undertaken to 

check outlier values and to eliminate erroneous values in time series.  

In this work, data quality control was carried out by combining several methods: (i) by 

analyzing difference series between candidate and neighbouring stations (ii) by applying 

limits derived from interquartile ranges (this can be applied either to individual series, i.e. 

absolutely or, better, to difference series between candidate and reference series, i.e. 

relatively) and (iii) by comparing the series values tested with “expected” values – technical 

series created by means of statistical methods for spatial data (e.g. IDW, kriging).  

Neighbouring stations (method i) or reference series (method ii) may be selected either by 

means of correlations or distances (in the case of temperature the results are different, while 

for precipitation the selection coincides). Correlation coefficients can be applied either to 

normal series or to series of first differences (see e.g. Peterson, 1998). The latter is preferable 

at this stage of processing, since homogenization has not been carried out. In our case, for 

comparison with neighbour stations, up to eight of the nearest stations were selected, with a 

distance limit of 300 km and altitude difference restricted to 500 m. Only series within the 

same observation hours were selected.  

Various characteristics were considered for the evaluation of outliers. For example, a 

count of statistically significant different neighbours (confidence limit 0.95) was evaluated by 

means of difference series (neighbour minus candidate station, or “equitable” ratios for 

precipitation: see below for description). Further, the values of neighbours were standardized 

with respect to base (candidate) station altitude and a new (theoretical) value for the candidate 

station was calculated – as a weighted average from the standardized values of the 

neighbours. Further, the coefficients of interquartile ranges (q75–q25) above q75 (or below 
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q25) were evaluated (calculated from the standardized neighbour values), and applied to 

candidate station value; this was done in order to assess similarity of neighbour values used 

with regard to the test value: the more values of neighbours are similar, the higher the value of 

the coefficient becomes. 

The final decision on removing outliers was based on a combination of factors: the 

percentage of the count of significantly different neighbours (for automation of quality 

control, 75% was applied); the probability of median of all neighbours-base differences or 

ratios (for automation CDF>0.95, normal distribution, was taken); difference between base 

station value and median calculated from standardized neighbours values, expressed as 

probability (for automation CDF>0.95 applied again); coefficient of interquartile range – base 

station value compared to standardized neighbours values (considering coefficient of IQR of 

more than 3 for automation); difference between expected value and median calculated from 

original values of neighbours divided by standard deviation of base station (CDF<0.9 with 

respect to automation), and finally, after automatic selection applying the limits mentioned, 

by visual (subjective) comparison of the standardized values of neighbours with the candidate 

station values. Fig. 3 shows an example of the parameter settings for calculation in 

ProClimDB software and final output for decision-making about outliers. 

Further details on the quality control process may be found in the documentation for 

ProClimDB software (Ńtěpánek, 2008). 

 

 
 

 

Figure 3. Setting the ProClimDB software for outlier values evaluation. Top (two-way processing: 

selection of neighbours and calculation of characteristics for evaluation of outliers). Bottom: example of 

output with auxiliary characteristics for quality control evaluation. 

HOMOGENIZATION 

Although daily values were the subject of processing in this work, detection of 

inhomogeneities was performed using monthly means (or sums in the case of precipitation). 

Inhomogeneities are easier to detect in monthly series because they involve less noise than 

daily values. Moreover, daily values for some meteorological elements (e.g. air temperature) 

are dependent, so application of common statistical tests is difficult. Transformation of daily 
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precipitation sums to normal distribution is not easy either, even where possible, and there are 

certain drawbacks to such processing, for example fewer values available for analysis when 

omitting zero values). 

The relative homogeneity tests applied were: Standard Normal Homogeneity Test 

[SNHT] (Alexandersson, 1986, 1995); the Maronna and Yohai bivariate test (Potter, 1981); 

and the Easterling and Peterson test (Easterling, Peterson, 1995). Reference series calculations 

were based on distances from the five nearest stations, with a distance limit of 300 km and an 

altitude difference limit of 500 m. The power for weights (inverse distance) for temperature 

and water vapour pressure was taken as 1, for wind speed as 2 and for precipitation as 3. 

Neighbouring station values were standardized to average and standard deviation of candidate 

station. An example of parameter settings for the calculation of reference series by means of 

ProClimDB software is shown in Fig. 4. Detection of inhomogeneities was performed for 

series to a maximum duration of 40 years, while the overlap for two consecutive periods was 

10 years (requirements of SNHT tests for one shift). The tests were applied on monthly as 

well as seasonal and annual averages (sums). 

 

  
 

Figure 4. Settings for calculation of reference series in ProClimDB software, air temperature (left) and 

precipitation (right) 

 

The main criterion for determining a year of inhomogeneity was the probability of 

detection of a given year, i.e. the ratio between the count of detections for a given year from 

all test results for a given station (using type of reference series, range of tests applied, 

monthly, seasonal and annual series) and the count of all theoretically possible detections. 

Further details of reference series creation and testing may be found in Ńtěpánek et al. (2007). 

After evaluation of detected breaks and comparison with metadata, a final decision on 

correction of inhomogeneities was made. Data were corrected on a daily scale. Adjustment of 

such inhomogeneities was addressed by means of a reference series calculated from the 

weighted average over the five nearest stations (weights as inverse distance and with a power 

of 0.5 for temperature, water vapour pressure and with a power of 1 for precipitation and wind 

speed), applying standardization of neighbour station series to average and standard deviation 

of candidate station. Reference series for inhomogeneity corrections were calculated on a 

daily scale, five years before and after a break. 

We created our own correction method, an adaptation of a method for the correction of 

regional climate model outputs by Déqué (2007), itself based on assumptions similar to those 

implicit in methods described by Trewin and Trevitt (1996) and Della-Marta (2006), which 

apply variable correction according to individual percentiles (or deciles). Our process is based 

on comparison of percentiles (empirical distribution) of differences (or ratios) between 
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candidate and reference series before and after a break. Percentiles are estimated from 

candidate series and values for differences of candidate and references series are taken from 

the same time (date). Each month is processed individually, but also taking into account the 

values of adjacent months before and after it to ensure smoother passage from one month to 

another. Candidate – reference differences for individual percentiles are then differenced 

before and after a break and smoothed by low-pass filter to obtain a final adjustment based on 

a given percentile (see Fig. 5 for illustration). Values (before a break) are then adjusted in 

such a way that we find a value for the candidate series before a break (interpolating between 

two percentile values if needed) and the corresponding correction factor, which is then 

applied to the value to be adjusted. Special treatment is needed for outlier values at the ends 

of distributions. 

 

Figure 5. Deriving corrections for individual percentiles from differences between candidate and 

reference series before and after a break 

 

Various characteristics were analyzed before applying the adjustments: the increment of 

correlation coefficients between candidate and reference series after adjustments; any change 

of standard deviation in differences before and after the change; presence of linear trends, etc. 

In the event of any doubt, the adjustments were not applied.  

The above-mentioned steps (homogeneity testing, evaluation and correction of 

inhomogeneities detected) were performed in several iterations. At each iteration, more 

precise results were obtained. Missing values were filled in only after homogenization and 

adjustment of inhomogeneities in the series. The reason for this was that the new values were 

estimated from data not influenced by possible shifts in the series. Moreover, when missing 

data are filled in before homogenization, they may influence inhomogeneity detection in a 

negative way.  

QUALITY CONTROL RESULTS 

Various meteorological elements were subject to thorough quality control according to 

the methodology described in section 3. An optimal set of parameters was found for each 

meteorological element (by cross-validation). For temperature this was, for example, 

standardization to altitude (for each day individually), power of weight (reciprocal value of 

distance) of 1, trimmed mean (applying 0.2 and 0.8 percentiles), no regression correction and 

outliers check (CDF=0.99). For precipitation, water vapour pressure and wind speed, trimmed 

mean was not applied; power of weights was taken as 3 for precipitation, 2 for wind and 1 for 

water vapour pressure. Moreover, for precipitation, transformation of values was applied to 

obtain a comparable value not dependent upon the mode of division (i.e. X/Y or Y/X have the 

same distance from 1). 
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It is important to analyze only measured values in a quality control check; in derivatives 

of them such as daily averages, errors are already masked to some extent. This fact is well 

illustrated in Figs. 6 and 7. For air temperature, more outliers were detected in the morning 

and evening measurements (probably associated with steeper gradients). The same is true of 

relative humidity and wind speed. On the other hand, water vapour pressure shows more 

outliers for the 14:00 observation hour compared to morning or evening measurements. In all 

these cases, the number of outliers detected in daily mean values is the lowest and in monthly 

averages it would be even worse, i.e. only the largest outliers would then be detected. 

 

 
Figure 6. Number of outliers for air temperature (T) at observation hours 07:00, 14:00, 21:00, AVG – 

daily average; daily maximum temperature (TMA), daily minimum temperature (TMI), daily ground 

minimum temperature (TPM); water vapour pressure (E), relative humidity (H), wind speed (F). For 

period 1961-2007, from 3,431,000 station-days. 

 

The number of detected outliers differs considerably between the various meteorological 

elements, e.g. for relative humidity the number is ten times higher than that for air 

temperature. The number of outliers for sunshine duration (not shown on the plot) is similar to 

that for minimum temperature (1022). For precipitation, this is almost 8000, for new snow 

about half of this and for snow depth about a third (however, there are about four times more 

precipitation stations than climatological stations). 

The number of outliers has clear annual cycle. For most of the elements, a higher number 

of outliers was detected in summer months than in winter months (see Figure 7). For air 

temperature and minimum temperature, the maximum occurs in July, for water vapour 

pressure in August, for wind speed in August. For precipitation there are two maxima per 

year, in the summer months and then in January and December, while during spring and 

autumn a lower number of outliers was detected. In contrast, sunshine duration shows a 

higher number of outliers in January and December, new snow in December (zero in summer 

of course) and snow depth in November and April.  

Air temperature, as has already been shown (Fig. 6), exhibits more errors in daily 

minimum (or ground minimum) temperature compared to maximum temperature, but the 

ratios change considerably in the course of the year. While in summer months the number of 

detected outliers for minimum or ground minimum temperatures is much higher (e.g. ten 

times so in July), in the winter months the number is the same; the number of maximum 

temperature outliers does not change very much in the course of the year.  
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Figure 7. Number of outliers for air temperature at observation hours, AVG – daily mean temperature 

(left) and water vapour pressure at observation hours, AVG – daily average (right). For period 1961-2007, 

from 3,431,000 station-days 

 

The number of detected outliers also changes with time (see Fig. 8). For air temperature, 

the higher number of outliers since the late 1990s coincides well with transition to automatic 

measurements. The same holds true for minimum temperatures. Water vapour pressure shows 

higher numbers since the early 1990s. On the other hand, no trend was found for maximum 

temperature and relative humidity. For precipitation and wind speed, the highest number 

occurs in the late 1960s, with outliers diminishing from then onwards. 

 

 

Figure 8. Number of outliers per one station for air temperature (all observation hours and daily average) 

(left) and precipitation (right). Period 1961-2007 

 

Once quality control has been applied on a daily scale (observation hours), the series of 

various meteorological elements are finally ready for homogenization. 

HOMOGENIZATION RESULTS 

Daily averages, rather than individual observation hours, were worked upon for data 

homogenization (methodology as described in section 4). Observation (direct) measurements 

should be better for homogenization, for the same reason as given for quality control, i.e. 

possible inhomogeneities are better manifested and thus detectable and correctable in 

measured values then in some their derivatives. However, the object, at this stage, was largely 

to tune the methodology to daily data homogenization. A return to working with observation 

measurements is planned for the near future. 

Detection of inhomogeneities was performed for monthly averages. The main reasons for 

this were less noise in the series and fewer (or no) problems with the statistical properties of 

series such as dependence of values (present e.g. in daily air temperature series). Fig. 9. shows 
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the correlation coefficients between candidate and reference series and monthly values for 

various meteorological elements. While for air temperature (daily mean, maximum and 

minimum) and precipitation the correlations are very high (median above 0.95 or 0.90 

respectively), for relative humidity they remain high enough (median values drop to 0.5 in 

winter months), but for wind speed the medians of correlation drop in the summer months to 

the limit of statistically significant values (0.05). Correlations for precipitation are very high 

because the precipitation station network is much denser than the climatological one (mean 

minimum distance is 6.5 km). Correlation coefficients show a clear annual cycle. 

 

 

 

 
 

 

 

Figure 9. Correlation coefficients between candidate and reference series (monthly values) for air 

temperature (T_AVG), precipitation (SRA), relative humidity (H_AVG) and wind speed (F_AVG). For 

200 climatological stations and 750 precipitation stations (at least 20 years of measurement). 

 

Homogeneity tests applied for inhomogeneities detection were SNHT, Bivariate test and 

the Easterling and Peterson test. Fig. 10 shows the number of statistically significant 

inhomogeneities detected (0.05) by Alexandersson‟s SNHT and the Bivariate test together. 

Again, a clear annual cycle emerges. For air temperature and wind speed more breaks occur in 

the summer months while this occurs for precipitation in the winter months (mainly due to 

problems associated with measurement of solid precipitation). For water vapour pressure, the 

annual cycle is not so clearly manifested. 
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Figure 10. Number of statistically significant inhomogeneities (0.05) for air temperature (T_AVG), 

precipitation (SRA), water vapour pressure (E_AVG) and wind speed (F_AVG), detected for monthly 

values. For 200 climatological stations and 750 precipitation stations. 

 

Breaks correction was decided upon after thorough comparison of the results of 

inhomogeneity detection with metadata. The number of corrected inhomogeneities differs for 

individual meteorological elements (see Fig. 11). For example, more breaks were corrected 

for maximum temperature than for minimum temperature. Water vapour pressure and wind 

speed were corrected about twice as frequently as temperature. In contrast, precipitation was 

corrected less frequently taking into account the fact that there are 4.5 times more 

precipitation stations than climatological stations. 

 

 
Figure 11. Number of inhomogeneities explained by metadata for air temperature (T_AVG), maximum 

temperature (TMA), minimum temperature (TMI), precipitation (SRA), water vapour pressure (E_AVG) 

and wind speed (F_AVG). For 200 climatological stations and 750 precipitation stations. 

 

The number of corrected inhomogeneities varies with time (for example see Fig. 12). For 

air temperature (daily mean and maximum temperature) and water vapour pressure, an 

increase appears after the late 1990s when automation started to be introduced into the station 

network (associated with change of instruments, shelter, “observer”). For wind speed and 

minimum temperature there is no clear trend in the number of inhomogeneities over time (but 

the percentage of inhomogeneities explained by metadata increases considerably after the 

1990s – before in fewer than then half of cases, after in more than half).  The highest number 

of corrected inhomogeneities for precipitation is found in the 70s. 
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Figure 12. Number of corrected inhomogeneities for air temperature for individual years, divided into the 

number of unexplained breaks (no metadata), explained by metadata (metadata) and associated with 

automation (metadadata – AMS). For 200 climatological stations 

 

An annual cycle is also clearly manifested in the correction of inhomogeneities (data 

corrected on a daily scale as described in section 4). Considering the absolute values of 

corrections, the degrees of adjustment were higher during the summer months for air 

temperature and water vapour pressure, while for wind speed slightly lower adjustments were 

made in the summer months compared with those of winter. For precipitation, major 

corrections (ratios) were applied in winter months. After correction, correlation coefficients 

increased mainly in the summer months (air temperature, water vapour pressure and also wind 

speed).  

Future work will lead to the application of observation hour measurements for 

homogenization, not just daily averages. On preliminary comparison, the results achieved 

(homogenized daily data) should differ only negligibly from the results obtained by 

application of observation hours, so a start can be made on using the currently acquired series 

for various data analyses requiring homogeneous daily data, e.g. studies of extremes. 

CONCLUSIONS 

The current work presents a methodology for outlier detection and series homogenization 

for various meteorological elements in the area of the Czech Republic in the period 1961-

2007.  

A method for outlier detection that could be automated to the greatest extent was a 

priority, since millions of values had to be processed for each meteorological element. Such a 

method was finally found and successfully applied. It utilizes a combination of several 

methods for outlier detection. No one method alone was found adequate; only a combination 

leads to satisfying results – the discovery of real outliers and suppression of fault alarms. 

Parameters (the settings appropriate to the methods) had to be found individually for each 

meteorological element. 

In the outlier detection itself, errors must be sought in straight, measured data rather than 

merely daily averages or even monthly averages (sums), since outliers are masked to a greater 

or lesser extent in the latter. Errors in measurement tend to occur more frequently in certain 

parts of the year, generally in the summer months. 

A clear annual cycle also emerged in several of the characteristics of the inhomogeneities 

detected. For example, air temperature inhomogeneities occur mainly in the summer months 

and the same holds for the amount of corrections applied, while in the case of precipitation 
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more inhomogeneities were detected in the winter months (associated with solid precipitation 

measurements); the corrections applied were also higher in the winter months. Automation of 

measurements had very strong influence on the homogeneity of station time series (and even 

the occurrence of outliers) in terms of most of the meteorological elements (with the 

exception of minimum temperature, precipitation and wind speed). Fortunately, automation 

was introduced successively into the station network so it was possible to detect it and make 

corrections without major problems.  

The data processing for this work was carried out by means of ProClimDB software for 

processing whole datasets (finding outliers, combining series, creating reference series, 

preparing data for homogeneity testing, etc.) and AnClim software for homogeneity testing 

(http://www.climahom.eu). Further development of the software, e.g. connection with R 

software, is ongoing. 

Further steps in quality control and homogenization will lead to analysis of individual 

observation hours and also historical data. 
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INTRODUCTION 

 

Nowadays a large number of statistical methods are applied for homogenising climatic time 

series. A challenging task is to evaluate the differences between the efficiencies of various 

homogenisation methods, since beyond the homogenisation method examined efficiency 

depends also on the statistical properties of time series and the efficiency measure applied. 

Objective homogenisation methods can be evaluated quantitatively only, and the study deals 

with detection parts (OMID) only, i.e. the skills in detecting and correcting inhomogeneities 

(IHs) in given relative time series are considered, but the way of the creation of relative time 

series, and the impacts of possible iterative elements in the full process of dataset 

homogenisation are not. This presentation focuses on the usability of different kind efficiency 

measures. Results comprise the efficiencies for 15 OMIDs for several test datasets of various 

statistical properties of IHs included in time series. 

 

EFFICIENCY MEASURES 

 

Before efficiency measures are discussed it is worth to look through the general expectations 

from “good” homogenisation methods, as it is more than identifying IHs of time series. When 

an OMID is applied on time series, the general aims and expectations are as follows: i) 

obtaining the real climatic trends, ii) obtaining the real picture of climate fluctuations, iii) 

identifying correctly all the IHs of large magnitudes, iv) identifying as many IHs of moderate 

magnitudes as it is possible. 

 Usually the identification of change-point type IHs are tested only, and the most 

frequently applied measure is the hit rate (or power), since it has both theoretical and practical 

importance. Nevertheless, minimising the rate of false detections has also high importance, 

therefore some combinations of hit rate and false detection rate are also applied (Mestre et al., 

2008). Beyond the presentation of hit rates Ducré-Robitaille et al. (2003) show the SSE values 

(sum of squared errors) for adjusted series to obtain information about the under- or over-

detection of IHs in time series. 

Matthew and Menne (2005) use several measures. Let the sum of right detections, that 

of false detections, and total number of change-points in the dataset be denoted by SR, SF and 

S, respectively, and the sample size is N. (Supposing k time series of n-year length, N = k · n.) 

The hit rate (H), false detection rate (F), false alarm rate (FAR), bias of detection frequency 

(B), and the improvement in skill compared to random forecasts (HSS) can be built from SR, 

SF, S and N.  
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The diversity of efficiency measures can be reasoned by the fact that efficiency depends on 

the purpose of the homogenisation, as well as on the statistical characteristics of time series. 

In addition, even such simple concepts as “right detection” and “false detection” are not 

absolutely objective, because their definitions need subjective decisions about the tolerance in 

lapse of timings (j) and magnitudes (m). We apply arbitrary, but reasonable choices for the 

estimation of efficiencies. In this study the H, FAR, and three further measures are applied. 

Two of the latter three (EA and EB, see below) are for evaluating detection skill, while the 

third one (ET) is dedicated to control the impact of OMIDs on the reliability of linear trend 

estimations. 
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The conception of EA is that the importance of finding real IHs and avoiding false detections 

is practically the same. However, in case of low number of factual IHs, EA can easily be 

negative, even if only a few false detections occurred. In contrast, this inconvenience cannot 

happen with EB. In case of a pure white noise the target value of (1 - EB) equals with the 

probability of first type error in hypothesis testing for the existence of homogeneous or 

inhomogenous character of time series. In case of large number of large IHs in time series EB 

shows similar values to EA. With moderate intensity of IHs EB is always substantially higher 

than EA, but just because of the systematic character of (EB - EA), the rank order among 

OMIDs is not affected by the choice between EA and EB. 

For controlling the reliability of trend estimations, the difference between the mean 

bias of trend estimations for homogenised time series (f), and that for  time series without 

homogenisation (f0) is calculated: 
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ET shows the improvement in preciseness of trend estimations owing to homogenisation. In 

this study the trend estimations for the whole (100-year long) time series, and those for the 

last 50 year sections are evaluated.  

Definitions for calculating detection skill: 

  • In the detection process IH magnitudes are expressed in the proportion of the 

estimated standard deviation of noise (se*) in the examined time series. 

 

 Te ss  2R1*  if R > 0 

 Te ss *   if R  0 ,      

 

where R denotes 1-year lag autocorrelation, and sT means the empirical standard deviation of 

the time series. The application of the unit se* is reasoned by the fact that during the detection 

process the factual standard deviation of noise process (se) is known only for simulated time 

series, while for time series from observations this characteristic is unknown. In contrast, se* 

can easily be calculated for any time series. se* is usually higher than se, but never higher than 

sT. Thus se* is a better estimation of se, than sT would be. 

  • In calculating EA or EB factual IHs only with m > mo magnitudes are considered, and 

mo is 2 or 3 in this study. 

  • Right detection: A shift with m 1.5 for mo = 2 (m  2 for mo = 3) is detected with 

maximum j =1 time lapse. 
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  • False detection: A shift with m 1.5 for mo = 2 (m  2 for mo = 3) is detected at year j, 

but there is no shift of the same direction than the detected one with m > 0 within the (j-2,j+2) 

period. 

 

Considering that individual efficiency measures may reflect only some special features of 

OMIDs instead of their efficiency in a broader sense, some combinations of different kind 

measures, especially the combination of detection skill and skill in trend estimations might be 

beneficial. Domonkos (2006a) introduced such an efficiency measure (“general efficiency”), 

but we admit that such a measure is rather complicated and its structure is based on subjective 

decisions. In this presentation the general efficiency is not used. 

 

HOMOGENISATION METHODS EXAMINED 

 

Fifteen OMIDs are examined in the presentation, all of them are the same as those were used 

in Domonkos (2006a). In this paper basic parameterisations are used only, thus Caussinus - 

Mestre method and MASH are represented here only with one-one version. Details about 

method parameterisation, handling of outliers and the way of detecting multiple IHs can be 

found in Domonkos (2006a, 2006b). The fifteen OMIDs are listed here in alphabetical order. 

 

a) Bayesian test (Ducré-Robitaille et al., 2003) with penalised maximum likelihood method 

for calculating number of change-points (Caussinus and Lyazrhi, 1997; Mestre, 2004) [Bay] 

b) Bayesian test (Ducré-Robitaille et al., 2003) with serial correlation analysis (Sneyers, 

1999) [Ba1]  

c) Buishand-test [Bu1] (maximum of the absolute values of accumulated anomalies, 

Buishand, 1982) 

d) Buishand-test [Bu2] (difference between maximum and minimum values of accumulated 

anomalies, Buishand, 1982) 

e) Caussinus - Mestre method [C-M] (Caussinus and Mestre, 2004) 

f) Easterling-Peterson test [E-P] (Easterling and Peterson, 1995) 

g) Mann-Kendall test [M-K] (Aesawy and Hasanean, 1998) 

h) Multiple Analysis of Series for Homogenisation [MAS] (Szentimrey, 1999) 

i) Multiple Linear Regression [MLR] (Vincent, 1998) 

j) Pettitt-test [Pet] (Pettitt, 1979) 

k) Standard Normal Homogeneity Test for shifts only [SNH] (Alexandersson, 1986) 

l) Standard Normal Homogeneity Test for shifts and trends [SNT] (Alexandersson and 

Moberg, 1997) 

m) t-test [tt1] (Ducré-Robitaille et al., 2003) 

n) t-test [tt2] (Kyselý and Domonkos, 2006) 

o) Wilcoxon Rank Sum test [WRS] (Karl and Williams, 1987) 

 

DATASETS FOR EFFICIENCY TESTING 

 

Efficiency of OMIDs strongly depends on the statistical properties of IHs in datasets 

examined. Therefore the creation of proper datasets has crucial importance in the test 

procedure. In Domonkos (2006a) a dataset was developed in which the statistical properties of 

IHs highly resemble that of observed temperature time series in Hungary. More precisely, the 

resemblance is valid for relative time series with at least 0.4 autocorrelation, and the relative 

time series are derived from the observed data field by Peterson and Easterling (1994). This 

presentation uses again that dataset, but together with four other datasets, since one aim of the 

study is to compare the performances of efficiency measures in different tasks. Each dataset 
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comprises 10,000 one hundred year long relative time series. The time series are built from a 

standard white noise and artificially inserted IHs. In the creation of test datasets IH 

magnitudes are expressed with their proportion to se. Because of the difference in the applied 

unit magnitudes here are denoted with m’. 

The IH properties in the five datasets are as follows. 

a) “1 IH only”: One IH is included in each time series. Its type is change-point, the timing (j) 

is 40 or 60, and m’ = 3. 

b) “1+4 IHs”: Five change-points are included, one with  j = 40 and m’ = 3, while the others 

are with random timing and a fixed magnitude, m’ = 1.5. Minimum distance between adjacent 

IHs and from the endpoints of the series is 4 years. 

c) “EXP, m‟< 6”: The mean frequency occurrence is one IH per decade, but IH-frequencies in 

individual time series may deviate from the average. All the IHs are change-points, their signs 

(positive or negative), timings and magnitudes are random. Magnitudes (m’) are between 0 

and 6, they are exponentially distributed for m’ > 1, and equally distributed for m’ < 1. In the 

below formula q is a random variable with equal distribution between 0 and 1. 

 

 
)36.0(8.2 '  qem  if q 0.36 

 

 qm 
36.0

1
'   if q < 0.36       

d) “EXP, m‟< 2”: It is similar to “EXP, m‟< 6”, some parameters differ only. The mean 

frequency occurrence is one IH per decade again. All the IHs are change-points, their signs 

(positive or negative), timings and magnitudes are random. Magnitudes (m’) are between 0 

and 2, they are exponentially distributed for m’ > 1, and equally distributed for m’ < 1. Since 

all the IH magnitudes are smaller than 2, their appearance is similar to common noise. For this 

dataset EA cannot be applied, as the denominator of the formula would be zero. 

 

 
)59.0(69.1'  qem  if q 0.59 

 

 qm 
59.0

1
'   if q < 0.59      

e) “HU standard”: A complex structure of randomly distributed IHs of different types 

(change-points, platform-like IH-pairs, trends) and magnitudes. The title “HU standard” refers 

to the high resemblance of the statistical properties of IHs between this dataset on one hand, 

and relative time series with at least 0.4 first order autocorrelation, derived from an observed 

Hungarian temperature dataset, on the other hand. (High autocorrelation in relative time series 

is an indicator of substantial pollution by IHs, see e.g. Sneyers, 1999.) 

 The mean frequency of IHs is about 3 per decade, but most of them have short duration 

and small magnitude. The decline of frequency with growing magnitudes is considerably 

faster for m < 2.9 magnitudes, than in case of EXP, m‟< 6. As a result of this difference in the 

magnitude distribution, there are much less IHs of 1.5 < m < 4 in HU standard, than in EXP, 

m‟< 6, in spite of the fact, that the frequency of all IHs is higher in HU standard. See more 

details about the properties of this dataset in Domonkos (2006a). 

 

RESULTS 

 

Fig. 1 presents the detection skills for the OMIDs examined. It comprises eight parts (fig. 

1a…1h) differing in the test dataset or mo parameter applied. Usually formula EA (for dataset 
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EXP, m‟< 2 the EB) was used. Results show that i) Detection skill is almost always positive 

(number of correct identification is usually larger, than that of false detection for each OMID 

examined); ii) Differences according to test dataset characteristics are often larger, than 

according to different OMIDs; iii) If results for each specific dataset - OMID pair are 

compared, detection skill is always higher with large IHs (mo = 3), than for moderate and high 

IHs together (mo = 2), with one exception only (dataset EXP, m‟< 2 with M-K); iv) Rank 

order of skills are hardly affected by the arbitrary choice of mo; v) For dataset “1 IH only” 

detection skills are higher, than for other  datasets (except for tt1), despite the fact that mo = 2 

is applied with “1 IH only”, since the size of the IH magnitude does not allow the application 

of the higher threshold. 

 Comparing the results for individual OMIDs, it can be find that C-M, E-P and MAS 

usually perform better, than the other methods, particularly with datasets HU standard and 

EXP, m‟< 6. In contrast, C-M and MAS are the poorest when there is no IH of substantial size 

in the time series (dataset EXP, m‟< 2). 

 
Figure 1. Detection skills for individual OMIDs. Striped: C-M, filled: MAS, dotted: E-P. 

a) dataset “1 IH only”,  mo = 2. 

 

 
Figure 1b. Dataset “1+4 IH”,  mo = 2 
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Figure 1c. Dataset “EXP, m‟< 6”,  mo = 2 

  
Figure 1d. Dataset “EXP, m‟< 6”,  mo = 3 

 
Figure 1e. Dataset “EXP, m‟< 2”,  mo = 2 
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Figure 1f. Dataset “EXP, m‟< 2”,  mo = 3 

  
Figure 1g. Dataset “HU standard”,  mo = 2 

 
Figure 1h. Dataset “HU standard”,  mo = 3 

0

25

50

75

100

tt1 SNT Bu1 Pet E-P tt2 SNH Bu2 Bay WRS Ba1 MLR MAS M-K C-M

EB[%]

0

25

50

75

100

C-M MAS E-P Ba1 MLR Bay SNH SNT Bu2 Bu1 tt2 tt1 WRS Pet M-K

EA[%]

0

25

50

75

100

MAS C-M E-P Ba1 MLR Bay SNH SNT Bu1 tt1 Bu2 tt2 WRS Pet M-K

EA[%]



 27 

It seems that E-P method has the most stable high performance in detection skill. MAS, C-M, 

Bay, SNH and MLR have also favourably high detection skill, while non-parametric methods, 

as well as t-tests and SNT have poorer results. Surprisingly low detection skill belongs to M-

K in each experiment. 

 Fig. 2 presents hit rates and false alarm rates for six selected OMIDs (MLR, C-M, E-P, 

MAS, SNH, tt1). While fig 2a shows differences according to datasets and the choice of mo, 

fig 2b shows the differences among specific OMIDs. Best results appear near the upper left 

corner of the figures, while moving down or right, skills are decreasing. It can be seen again 

that highest detection skills belong to the dataset “1 IH only”. In fig. 2a filled black symbols 

are used for the results of experiments with mo = 3, to demonstrate that for large IHs the 

detection skills are higher, than for medium and large IHs together. 

It seems that within the results of a given test dataset higher H values tend to be paired 

with higher FAR, although there are several exceptions. C-M has the highest H, but FAR is 

also higher for this method, than the average FAR for the other OMIDs. MAS always has 

lower H and lower FAR, than C-M does, but the differences between the results of these 

OMIDs are not very large, and they both can be characterised with high H and moderate FAR. 

E-P, SNH and MLR also have high power, but H < 75% occurs with them in some 

experiments. tt1 produces the lowest FAR, but together with poor H values. 

Fig. 3 presents the ET values for individual OMIDs. The values are always positive again 

(with one exception: tt1 with HU standard), which fact proves that linear trend estimations are 

more precise if time series are homogenized before the  

 
Figure 2. H-FAR value-pairs. a) “1 IH only”, mo = 2: + ,  “1+4 IHs”, mo = 2: ٱ, 

“EXP, m‟< 6”, mo = 2:  ,  “EXP, m‟< 6”, mo = 3: ▲ , 

“HU standard”, mo = 2: o ,  “HU standard”, mo = 3: • . 

 

 

 

0

25

50

75

100

0 5 10 15 20 25

H (%)

FAR (%)



 28 

 

Figure 2b. C-M: • , E-P: * , MAS: ▲, MLR: ٱ, SNH: +, tt1: o  

 
Figure 3. Skill in linear trend estimations for individual OMIDs. Striped: C-M, filled: MAS, dotted: E-P. 

a) Dataset “1 IH only”. 
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Figure 3c. Dataset “EXP, m‟< 6” 

 
Figure 3d. Dataset “EXP, m‟< 2” 

 
Figure 3e. Dataset “HU standard” 
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calculation of trends. The five parts of the figure (fig. 3a…3e) are for the five test datasets 

applied. Results for different datasets have several common 

Characteristics, particularly if the very special case of “1 IH only” is excluded from the 

comparisons. Results show that 10-11 OMIDs produce rather similar ET values, while the last 

4 ones always have much poorer results. The poorest trend detection skills always belong to 

the tt1, E-P, tt2 and M-K. The rank order has similarities also among the best OMIDs. C-M is 

always the best according to ET values, the rank of Bay is always 2 or 3, that of SNH is 3-5, 

while that of MAS, 

Bu1 and WRS is always between 3 and 7. ET values of MLR are usually slightly lower, than 

that of several other OMIDs, but in case of HU standard MLR has the second highest skill. 

This special feature of the results for MLR may be in connection with the fact that HU 

standard is the only test dataset used in this study which contains linear change type IHs 

beyond change-points. 

 

DISCUSSION 

 

Efficiencies of fifteen OMIDs were estimated using different efficiency measures and five 

different test datasets. The picture is mixed, since the efficiencies strongly depend on the 

efficiency measures and test datasets applied. However, several common features were found 

among the different kind results. The dependence of the rank order of OMID efficiencies is 

strong on the efficiency measure, but moderate only on the test dataset characteristics (with 

some exceptions, whose occurrences are rather unlikely in real climatic datasets). The rank 

order of skills in trend estimations turned out to be surprisingly independent from test datasets 

used. On the other hand, the performances and ranks for a specified OMID are often markedly 

different according to different efficiency characteristics, i.e. a specific OMID may perform 

very different skills in hit rate, false alarm rate and reliability of trend estimation, the most 

striking examples were mentioned in the previous section. The following principles may help 

to obtain a general evaluation of OMID efficiencies: 

  • Various characteristics (hit rate, false alarm rate, etc.) must be evaluated together, 

  • If the role of one factor (e.g. false alarm rate) is overemphasized, it may result in 

misleading consequences. In fact an uncovered IH has very similar impact on the reliability of 

climate variability investigations, to the one that can be caused by a false IH of the same 

magnitude. 

  • Since homogenisation procedures often contain iterations, the impacts of iterations on 

the growing or abatement of detection errors should also be considered, but it is beyond the 

scope of the present study. We note that the performance of detection skill (both the hit rate 

and the false alarm rate) likely has higher practical importance, than that of the ET values has, 

since detection errors may influence harmfully the forthcoming results of iterations. On the 

other hand, low ET values are also indications of certain type detection errors, therefore such a 

large negative difference that was experienced with E-P relative to the performance of most 

OMIDs, is an indication of limited appropriateness, in spite of high EA and EB values. 

  • Unified evaluation for the results of various test dataset and parameterization 

applications is advantageous. 

 Our results show that C-M and MAS usually perform better, than the other OMIDs, 

and it is particularly valid for dataset “HU standard” which is close to a real, observed dataset. 

This finding is not a surprise, since these two methods were developed to detect multiple IHs 

without hierarchic algorithm, while some hierarchic way of detection process cannot be 

avoided using the other OMIDs. The drawback of hierarchic detection was analysed e.g. by 

Menne and Williams (2005), so our results confirm only the superiority of direct methods for 

detecting multiple IHs. The results also confirm the theory that non-parametric OMIDs are 
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less powerful in comparison with other OMIDs, although there are some exceptions for this 

rule. 

 It was found that MAS and C-M have clearly higher detection skills in datasets those 

mimic observed climatic time series with considerable pollution by IHs (i.e. with at least 0.4 

serial correlation in relative time series), and C-M is always the best method according to ET 

values. However, the superiority of these OMIDs is not uniform; other “common” OMIDs 

sometimes perform better. We name this phenomenon inverse rank order. The main cases of 

inverse order are as follows: i) Only one IH exists in the time series (all the evaluated skills), 

2) Detection skill is relatively poor when there are several IHs in the time series, but non of 

them has large magnitude (in our experiments, when m’ is smaller than 2 for each IH), 3) C-

M (and in some experiments MAS) has slightly higher FAR, than most of the examined 

OMIDs have, 4) Trend detection skill is often slightly poorer with MAS, than with Bay and 

SNH. 

It must be stressed that in spite of the occurrences of inverse rank order, MAS and C-

M are highly recommended for practical use, particularly, because they very often provide the 

highest skill, and even in cases of inverse rank orders their efficiencies are not low. On the 

other hand, it can be stated that Bay, SNH and MLR are also rather good OMIDs. What is 

more, in some specific tasks those have methodological connection with homogeneity 

investigations the application of some OMIDs with not very high efficiencies can be the most 

advantageous. For instance, in detecting climatic jumps, E-P seems to be an outstandingly 

good OMID, because of its uniformly high detection skill in various test datasets. 

To reduce the chance of false detection with C-M and MAS, we mention two 

opportunities: i) Although both C-M and MAS have inner test to decide about homogeneous 

or inhomogeneous character of time series, they tend to detect more false IHs than several 

other OMIDs, when there are very few or small IHs only in the time series examined. 

Therefore time series with multiple IHs of considerable magnitudes should be preselected 

before the application of C-M or MAS. There is also a problematic point, that during the 

iterations, if OMIDs are applied repeatedly on the same time series, the chance of false 

detection may increase. ii) Another possibility is to introduce optimised parameterisations, as 

it was shown in Domonkos (2006a). 

Finally we note that further experiments are needed with the use of various test 

datasets and efficiency measures, to obtain a more complete picture about OMID efficiencies. 

 

CONCLUSIONS 

 

  • Results of efficiency calculations strongly depend on the efficiency measures applied. 

Therefore a profound evaluation of the efficiencies for individual OMIDs needs the combined 

use of several efficiency measures. 

  • Efficiencies of individual OMIDs are almost always positive what proves that 

homogenised time series are more usable for climate variability investigations, than raw time 

series. 

  • The results of this study confirm that parametric OMIDs usually perform better, than 

non-parametric OMIDs, and the highest skills are usually experienced with OMIDs capable of 

detecting multiple IHs in a direct (non-hierarchic) way. Two direct OMIDs exist: C-M and 

MAS. Their practical use is highly recommended. 

  • The usefulness of individual OMIDs depends on the statistical properties of time 

series. Further examinations of OMID efficiencies are needed relying on experiments with 

more various test datasets and parameterizations of efficiency measures, in order to obtain 

more exact information about the practical usefulness of OMIDs. 
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Abstract 
 

From May 2003 through June 2005 a field experiment was carried out at the KNMI terrain in De Bilt. 

At five sites, including the operational site, temperature and wind speed were measured at a height of 

1.5 m every minute, using identical instruments. The temperature differences between the sites have 

been studied in connection with the wind speed differences and operationally measured weather 

variables. During the experiment (in October 2004) a renovation of the nature area just west of the 

operational temperature screen took place. The renovation introduced an inhomogeneity in the 

temperature time series at the operational site. The inter-site temperature differences are largest in 

summer and smallest in winter. Except for the most enclosed site, these temperature differences have 

opposite signs for daily maximum and minimum temperatures. As could be expected, the magnitudes 

of the differences strongly depend on the weather conditions. The understanding of these dependencies 

is an important condition for improving the homogenization of daily temperature series.  
 

 

INTRODUCTION 

 

Temperature measurements are often an object of debate. Questions arise whether the 

measurements are representative for the area that the stations are supposed to represent, or 

whether the temperature time series are homogeneous enough to allow studies of climate 

trends and climate variability. Meteorologists mostly emphasize the first question while 

climatologists are generally more concerned about the second question.  

 

In this context, thermometer exposure and siting are important. WMO (1996) states: “In order 

to achieve representative results when comparing thermometer readings at different places 

and at different times, a standardized exposure of the screen and, hence, of the thermometer 

itself is also indispensable. For general meteorological work, the observed temperature should 

be representative of the free air conditions surrounding the stations over as large an area as 

possible, at a height of between 1.25 and 2 m above ground level. The height above the 

ground level is specified because large vertical temperature gradients may exist in the lowest 

layers of the atmosphere. The best site for the measurements is, therefore, over level ground, 

freely exposed to sunshine and wind and not shielded by, or close to, trees, buildings and 

other obstructions.” From this statement it is obvious that sheltering, and changes in 

sheltering due to e.g. growth of trees or relocation are undesirable for air temperature 

measurements.  

 

The present study aims at quantifying the possible effects of sheltering on temperature 

measurements. These effects have been studied at the local scale of the KNMI-terrain in De 

Bilt in a two-year experiment by comparing five different sites. Other causes that may affect 

temperature series, e.g., urbanization and reclamation of land, are not taken into account. The 

effect of urbanization on the temperature series of the De Bilt is discussed in Brandsma et al. 

(2003).  
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This paper summarizes some of the results of the experiment in De Bilt. An extensive 

description of the instrumental setup and calibration can be found in Brandsma (2004) that 

presents the results of the first year of the measurements.  

 

BACKGROUND AND METHODOLOGY 

 

Background 

 

The particular exposure problems in De Bilt are illustrated in Figure 1. The figure shows the 

location of the operational thermometer screen De Bilt 260 (DB260) at the instruments field 

of KNMI. The first problem originates from the lines of trees that run from south of DB260 to 

north-northeast. The present height of the trees varies from about 20 to 30 meter. Because the 

thermometer screen at DB260 is amply within the range of 8-12 times the obstacle height, 

local effects may affect the temperature measurements. The predominant southwesterly flow 

further attributes to this problem. In addition, in 2–3 years before the start of the experiment, 

the area west of DB260 (the green hatched area) had been transformed into nature. During the 

period May 2003–September 2004 the bushes in the nature area had heights up to 2 to 3 m at 

a distance of only 12 m from DB260, thus creating an extra shelter effect. In October 2004 the 

nature area has been renovated completely (see Figure 2), introducing an inhomogeneity in 

the measurements during the experiment.  

Figure 1: Location of the operational site (DB260) and the 4 parallel sites (Test1-Test4) at the 

KNMI terrain in De Bilt. Light green is grass cover and dark green trees. The white area that 

runs from mid bottom to top right consists mainly of vegetable gardens. The KNMI buildings are 

in gray (left from the vegetable gardens). The green hatched area represents a nature area. 
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The second problem deals with long-term homogeneity. At 27 August 1951 the operational 

thermometer screen was moved from location Test1 to the current DB260 location. It is 

known that this relocation, combined with a change in screen type and a minor relocation on 

16 September 1950 caused a jump downwards in the maximum temperatures, especially in 

the summer. The change in screen type was accompanied by parallel measurements. We 

digitized and analyzed these data and found that the screen transition partly explains the 

downward dump in summer maximum temperature. Unfortunately, no parallel measurements 

were performed for the relocation, making it difficult to correct for the jump, especially for 

the daily series. Moreover, since the relocation in 1951 the height of the line of trees increased 

considerably. The height of the line of trees varied at that time between 5 and 25 m, indicating 

a gradual growth of the trees between that time and present. 
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Figure 2: Aerial photo of the measurement field after the renovation of the nature area 

west of DB260 in October 2004. The arrows point to two new bodies of water. 
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Figure 4: Instruments at the operational site DB260. To the left the KNMI multi-plate 

radiation shield for measuring temperature and to the right the cup anemometer. Both 

instruments operate at 1.5 m above ground level. The 4 parallel locations are equipped with the 

same instruments.   

 

Figure 1 shows the position of the current operational site DB260 and the four selected 

experimental parallel locations indicated by TestN (N = 1,…,4). Test1 is located at the 

historical operational site; Test2 (the current back-up site) is situated 30 m from DB260 at 

118, and Test3 at 50 m from DB260 at 118. Test4 is situated about 220 m east of DB260 

near the operational wind mast, which measures wind direction and speed at 20 m height.  

 

Besides the large barrier of trees that runs from south of DB260 to north-northeast, there is 

also a shallow barrier between the vegetable gardens and the KNMI terrain (see Figure 1). 

The distance of Test3 to the barrier equals 23 m (perpendicular to the barrier). The barrier 

consists of a 2 m high permeable fence. Behind the fence, there are garden houses with a 

height of 2–3 m scattered over the vegetable gardens.   

 

Figure 3 shows the obstacle altitude for each site. The figure clearly shows that Test1 is the 

most enclosed location and Test4 the most open location. This is also reflected in the annual 

cycle of the percentage of shade hours (not shown). During winter, Test1 is in the shade for 

almost the whole day, while for Test4 this only happens for a small fraction (< 13%) of the 

day.  

 

Instrumental setup 
All 5 locations are equipped with identical instruments and sensors. Figure 4 shows the 

instruments at DB260. Air temperature is measured at 1.5 m above ground level in naturally 

ventilated KNMI multi-plate radiation shields. The standard measurement uncertainty of the 

sensors is 0.1C but this is reduce to about 0.03C by correcting the data with the calibration 

curves.   

Wind speed is measured at each site with cup anemometers on top of a pole (see Figure 4) at 

the same height as the air temperature measurements (1.5 m). The anemometers are situated at 

a distance of 4 m northeast of the thermometerscreens. The standard uncertainty of the 

sensors is 0.5 m/s. As for temperature, a higher accuracy was obtained by correcting the 

measurements with the calibration data.  
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Besides the experimental temperature and wind speed measurements also the following 

operational 10-minute measurements at the KNMI terrain are stored and used: wind direction, 

actual total cloud cover and total cloud cover in the last 30 minutes (both with ceilometer), air 

pressure reduced to mean sea level, precipitation duration, mean precipitation intensity, direct 

radiation, diffuse radiation, global radiation, grass minimum temperature at 10 cm, and 

horizontal visibility.  

 

Methodology 

 

The differences between the 5 locations are studied by comparing the air temperature 

differences T(SiteX – Test4), where SiteX stands for the Test1, Test2, Test3 and DB260 

sites. Test4 is used as the reference site. This site is likely not affected by the renovation of 

the nature area and is also a candidate future operational location. In this paper we focus on 

the monthly mean temperature differences between the 5 locations from May 2003 – June 

2005 and on the diurnal temperature cycle differences. Special attention is given to the impact 

of the renovation of the nature area.  

 

RESULTS 

 

Maximum temperature. Figure 5 shows the monthly means of the daily maximum temperature 

differences T. The temperature differences are largest in the summer half year and may 

amount to 0.4-0.5C for Test1 and DB260 (summer 2003). Before the renovation of the 

nature area in October 2004, T for DB260 and Test 1 are comparable, while after the 

renovation DB260 is close to Test2 and Test3. Keep in mind that that the temperature at Test1 

and the reference Test4 are probably not affected by the renovation.   
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Figure 5: Monthly means of the daily maximum temperature differences T between SiteX and Test4 for 

the period May 2003–June 2005 

 

Minimum temperature. Figure 6 shows the monthly means of the daily minimum temperature 

differences T. Compared to Figure 5 it is noteworthy that the sign of T changed, except for 

Test1. Test1 is warmer than Test4, both in the maximum and minimum temperature, where 

the relative warmth is largest for the minimum temperature. After de renovation, T for 

DB260, Test2 and Test3 are all close to zero. This suggests that the renovation influenced all 

of these three sites. 
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Figure 6: Same as Figure 5 but now for daily minimum temperature 
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Figure 7: Mean diurnal temperature cycle differences between SiteX and Test4 for (a) winter 2004 (DJF), 

(b) winter 2005 (after the renovation), (c) May-June 2004, and May-June 2005 (after the renovation) 

 

Diurnal temperature cycle differences. Figure 7 presents the mean diurnal temperature cycle 

differences between siteX and Test4. Note the behavior of Test1, especially in the summer, 

during sunrise and sunset. Because the site is in the shade during sunrise and sunset, 

temperatures at these times are lower than that of the other sites. Note also the decrease in the 

diurnal cycle differences with respect to Test4 for DB260, Test2 and Test3 after the 

renovation (especially for the May/June period). After the renovation, the diurnal cycle 

differences for DB260, Test2 and Test3 are almost identical, especially during daytime.  

 

Diurnal temperature cycle differences as a function of windspeed and cloudiness. Figure 8 

presents the mean diurnal temperature cycle differences between siteX and Test4 in summer 

for 4 combinations of windspeed W and cloudiness N (cloud cover fraction). The figure 

clearly shows that the inter-site temperature differences strongly depend on the prevailing 
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weather conditions. Low windspeed and clear-sky condition results in large inter-site 

temperature differences while large windspeed and cloudy conditions result minimize the 

differences.  

 
Figure 8: Mean diurnal temperature cycle differences between SiteX and Test4 for the summers (JJA) of 

2003 and 2004 (before the renovation) for four combinations of windspeed W and cloud cover N (fraction 

of cloud cover) as indicted on top of each panel 
 

DISCUSSION AND CONCLUSIONS 

 

In this study we quantified the possible effects of sheltering on temperature measurements at 

the KNMI-terrain in De Bilt. It appeared that, especially in summer, these effects may have 

the same order of magnitude as the long-term temperature trend (about 1.0C/100yr in De 

Bilt). However, for most sites the inter-site temperature differences for maximum and 

minimum temperature have opposite signs. The net effect on the daily mean temperatures (not 

shown) is, therefore, small. In practice, the largest inhomogeneities in mean temperature 

series may be anticipated in case of relocations from very enclosed sites (like Test1) to more 

open sites (the other sites). The renovation of the nature area, close to the operational site 

DB260, had a significant effect on the temperature.  

 

The results indicate that the magnitude of the inter-site temperature differences strongly 

depends on windspeed and cloud cover. In case of homogenization of daily temperature 

series, it is important to take this into account. A complication may be that for windpeed the 

largest effects on inter-site temperature differences occur in the range 0.0-1.0 m/s at screen 

level. In practice (a) windspeed is mostly not measured at screen level but at heights of 10-20 

m (during stable nights, windspeeds at these heights are uncoupled from those at screen 

height), and (b) the measurement error for small windspeeds is large. The first problem may 

be solved by installing additional anemometers at screen height at locations important for 

climate monitoring. The second problem may largely be met by the introduction of sonic 

anemometers.   
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Improvement of our understanding of inter-site temperature differences may enable the 

modeling them. In case of De Bilt there are certain aspects that are likely important and 

should be studied further. First, the non-uniformity of the KNMI-terrain may affect 

downstream sites by daytime advection. Especially the vegetable gardens seem to have 

energy balances different from those of the surrounding grassland. This results in different 

Bowen ratios (sensible heat flux/latent heat flux). Second, local stability differences are most 

important during nighttime stable conditions (small wind speeds, clear sky) when inversions 

develop, causing low temperatures near the ground. Differences in wind speed between the 

locations may then cause different strengths of the inversion, resulting in higher temperatures 

at the location with the larger wind speed. Third, screen ventilation differences are especially 

important during the day when radiation errors increase with decreasing wind speed. Fourth, 

small sky-view factors restrict radiation. This is mainly important at the Test1 location. Fifth, 

local differences in soil type and groundwater levels between the locations may affect the 

energy balance and may cause differences in observed temperatures. It is known that at the 

Test4 site groundwater levels are shallower than at the other sites. Especially in dry summers 

this may result in local differences in the Bowen ratio. Finally, instrumental errors may play a 

role, though these are minimized here by the calibration procedures. 
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INHOMOGENEITIES OF WIND DATA 

 

 

Detection of inhomogeneities in wind direction and speed data is a specific problem. First, 

instead of a single element, a pair of elements must be examined simultaneoulsy. None of the 

existing detection methods deal with more than one element at a time. Second, averaged 

values in series seem to contain insufficient information about examined weather element. 

Since some changes might occur only in certain ranges of values, consideration of 

distributions as an alternative solution gives some previously unavailable information about 

changes in series. 

Another difficulty with wind direction and speed data is the proper approach to various 

calculations. Wind series are coupled into a pair of completely different elements with 

different type and range of values, which are azimuth and speed. While wind speed could be 

treated as any scalar, wind direction data are limited to a fixed range of 360 degrees. Thus, 

wind data are defined in polar coordinates, which cannot be processed in homogenisation 

without some conversion of values or adaptation of existing methods. Neither splitting wind 

data to a pair of north and east component seems to be a satisfactory solution (Petrović, 2008). 

Therefore, a new method had to be used as an alternative solution. 

The ReDistribution Method (Petrović, 2004) deals with distributions of values instead of 

mean or extreme values. Hence, some additional information about changes in series are 

revealed. The ReDistribution Method is based on calculation of changes in frequencies of 

values by subranges between two distributions, generated from subsets with fixed moving 

window length. The intercomparison between two consecutive distributions detect 

significancy of changes and hence inhomogeneities. 

One of the advantages of the method is its ability to process data with small gaps, infrequent 

error occurence (i.e. typing errors) or outliers. Since such data appear in a very small number 

(once in hundreds of thousands of records or even less), their influence on data distribution 

values is practically insignificant. Average values might be greatly influenced by outliers, 

which appear to be a disadvantage, because of the rigorous needs for accurate data. Thus, 

even suspicious or incomplete data might be used with a very small risk of uncertainties. 
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AVAILABLE DATASET 
 

A good example of using this method is given by examination of wind direction and speed 

datasets from Ireland. These datasets are hourly wind direction and speed values from 13 

stations located countrywide (Figure 1), covering different periods beginning between 1939 

and 1954 up to end of 2007 (Table 1). 

A large number of metadata was also available and used for verification of this analysis.  

 

 

 Figure 1. Locations of stations in Ireland with available wind data 

Station latitude (N) longitude (W) altitude (m) start date

Birr 53.1 7.9 73 01.10.1954

Casement Aerodrome 53.3 6.4 94 01.01.1964

Claremorris 53.7 9.0 71 01.01.1950

Clones 54.2 7.2 89 01.01.1951

Cork Airport 51.8 8.5 154 01.01.1962

Dublin Airport 53.4 6.2 71 01.11.1941

Kilkenny 52.7 7.3 66 01.06.1957

Malin Head 55.4 7.3 22 01.05.1955

Mullingar 53.5 7.4 104 01.01.1950

Roche's Point 51.8 8.2 43 01.12.1955

Rosslare 52.3 6.3 26 01.12.1956

Shannon Airport 52.7 8.9 6 01.09.1945

Valentia Observatory 51.9 10.2 11 01.10.1939

Table 1. List of stations in Ireland with available wind data 
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THE PROCEDURE FOR DETECTION OF INHOMOGENEITIES 
 

Initial settings 

 

The ReDistribution Method requires initial settings that depend upon some summary 

information. To establish a number of categories for counts, it is necessary to review a range 

of values and overall value resolution Wind direction data have a 10-degree resolution, or 37 

possible values (36 values for direction plus one for calms). Wind speed range is from 0 to 63 

knots with resolution of 1 knot. Since values over 50 knots are very rare, this value can be 

considered for the top of the range. 

The best results from the method are obtained with 10-20 categories throughout the whole 

range. More categories would produce higher noise levels, while a lesser number of 

categories weakens the precision features of the method. Thus, there are 19 categories set for 

wind direction (18 for direction by 20 degrees plus one for calms) and 18 categories for wind 

speed (16 subranges by 3 knots, one for speed over 51 knots and one for calms). 

Another initial setting of the ReDistribution Method is the moving data window length. To 

avoid seasonal changes, it is best to use a whole number of years. To avoid taking into 

account a year that might feature some extreme situations (i.e. extreme values, prevailing 

wind direction more present than usual), a minimum of two years is the least acceptable 

choice for a start. However, the method has to be re-run at least once more, but with longer 

data window length. This returns lower noise level and more precise peaks of ReDistribution 

Index (RDI) values in temporal scale for detection of break points. The greater the number of 

different runs, the more reliable the information returned from the method. Still, too long 

window will diminish break points that appear in time shorter than the window length. 

In the case of Irish data, 2-year moving window runs produced quite high noise level. 

Additional runs were of 4-year and 6-year windows, which reduced noise to an acceptable 

level and confirmed detected break points. 

Although the ReDistribution Method is capable of dealing with sub-daily values, it is time 

consuming and it is recommended to calculate daily distributions first. Calculations using 

daily distribution values save a lot of time wasted in hourly values without any significant 

loss of power of the method that still indicate break points in daily resolution. This procedure 

requires recalculations of counted values into relative values (percentages) in order to get 

valid results. 

 

Selection of RDI peak values as break points 
 

The ReDistribution Method may calculate the RDI values for more than one series at a time. 

In this case, the RDI values are derived from two series, wind direction and speed. It is an 

important feature of the method, because detected break points might be more or less certain, 

and also explained by some presumed cause, depending on their (non)simultaneous 

occurence. If the peaks are more or less at the same point in time, the detected break point is 

more certain and even more accurate in temporal scale. Non-simultaneous RDI peaks more 

rely on the magnitude and signal/noise ratio. 
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Magnitudes of RDI peaks indicate the possibility and accuracy of detected break points. If the 

RDI value is over 0.125, the break is quite certain (Figure 3, point 2). Smaller peaks of RDI, 

but still over 0.100 might indicate a possible break (Figure 2, point 2). Even smaller RDI peak 

values might be a break point, but only if the peaks from two series are simultaneous and 

significantly higher than the noise level (Figure 2 and 1). 

Differences in time between detected break points and their causes are in a great accordance 

with RDI peak magnitudes. High RDI values return the break point information with very 

high precision (up to daily resolution, even the very day of change). When dealing with small 

Figure 3. Examples of RDI peaks; possible break with RDI > 0.100 and break of wind speed 

only (1) and ceratin break with RDI > 0.125 (2) (Birr, 6-year moving window) 

Figure 2. Examples of RDI peaks; simultaneous peaks of both series over noise level (1), peak of 

series below 0.100 but over noise level (2) and peak of wind direction series only (3) (Shannon 

Airport, 6-year moving window) 
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RDI peaks, differences in time between the detected break and its cause might be quite large 

(even a couple of years). Such low magnitudes might even question the significance of the 

detected break and thus consider series as homogenuous at that point. 

Finally, detected break points have to be considered according to its type and verified by 

metadata or any other source of information, which might include simultaneous breaks from 

different weather elements or results from any other reliable homogeneity test. Further 

examination of detected break points should be considered as a part of a homogenisation 

(correction of values) procedure. 

 

TYPES OF BREAK POINTS ACCORDING TO POSSIBLE CAUSES 
 

Main types of inhomogeneities 

 

There are three main types of inhomogeneities: 

Both direction and speed affected at the same time (Figure 3, point 2; Figure 2, point 1). This 

type of inhomogeneity is generally caused by one or more following reasons: change of 

instrument type, relocation of a measurement site, abrupt change of station surroundings, even 

change of observer. 

Wind direction only (no break point with wind speed) (Figure 1, point 3). Causes for this type 

of inhomogeneity include: change of instrument orientation or functionality (usually wind 

vane orientation, change of friction or inertia), misorientation of instrument (false orientation, 

i.e. according to magnetic instead of geographical north) and change of precision (number of 

wind rose directions). This is a quite rare type of inhomogeneity because there are very few 

situations in which only wind direction is affected by the change. 

Wind speed only (no break point with wind direction) (Figure 3, point 1). Breaks only in wind 

speed series are generally caused by change of instrument calibration, functionality (usually 

friction in mechanism associated with wind cups), change of threshold for initialization of an 

instrument, change of precision (including measurement units). Other causes for changes in 

wind speed only are mentioned with the first main type of inhomogeneity. 

 

 

TYPES OF INHOMOGENEITIES IN WIND DIRECTION SERIES 

 

Present experience gained with the ReDistribution 

Method has given several types of inhomogeneities 

in wind direction series. Examples of these types are 

given from processing wind data from Ireland. 

Shifting distribution of directions (Figure 4) is a type 

of change where distributions from one sector of 

directions (up to half a circle) move to another, 

different or even opposite sector. It is generally 

caused by a change in station surroundings or 

relocation of instrument. The example of Valentia 

wind direction break in 1950 corresponds to 

metadata information of building a balloon filling 

hut south of the measurement site in 1947. This 

event reduced frequencies of southern winds and 

slightly increased northern wind frequencies. The 
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redistribution of wind direction frequencies is 

associated mainly with low wind speeds, 

indicating change of local winds, while high 

wind speeds were still had the same 

distribution by directions. Since the magnitude 

of change is quite low (RDI is 0.100), and no 

other breaks were detected close to this one, 

the change of surroundings appears to have 

taken effect on wind direction data a few years 

later. 

Widening / narrowing of wind rose (Figure 5) 

is a type of change where frequencies of 

prevailing wind directions become lower / 

higher, making wind rose appear widened / 

narrowed. This is another type of change caused by changes in instrument environ-ment, but 

also an instrument replacement, which is featured with the given example of Shannon in 

1991. A new instrument was placed on a different mast, some distance away from the 

previous location, hence the change of location took effect on data. 

Spreading / contracting of wind rose (Figure 6) is 

a type of change where all frequencies become 

evenly higher / lower. The most probable cause is 

an instrument being replaced by one with lower / 

higher initialization threshold. Such changes 

frequently occur when mechanical anemometers 

are replaced by a new generation of wind 

instruments during automation of a station. This 

type of change usually has a small magnitude and 

it might be quite uncertain in time. An example of 

introducing an AWS in Kilkenny during 1998 

shows such type of change. 

Moving of prevailing wind (Figure 7) is a type of 

change where prevailing wind is being redirected 

by an angle, while other directions remain 

generally the same. This is due to change in 

measurement site environment, emerging or 

removing an obstacle near the instrument. Also, 

the reason could also be an instrument 

replacement, like in a given example of Clones in 

1997. 

Other types of inhomogeneities associated with 

wind direction were not found in the wind 

datasets from Ireland. These include: 

Rotation of a wind rose (Petrović, 2004) is a type 

of change where all frequencies seem to be shifted 

by an angle. The cause for this type is usually a misorientation of an instrument which is 

corrected at certain point in time. 

''Starry'' wind rose (Petrović, 2004) is a type of change where some directions are just missing 

or not sufficiently present in the distribution of direcions. This is equal to low precision 

measurements (or measurement unit) problem, where new instrument introduces more wind 
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direction classes than old measurements (i.e. changing a number of wind directions from 8 to 

16 or more). 

Irregular redistribution (Petrović, 2004) is any other type of change that is neither described 

here, nor easy to detect any pattern of change. The causes for this heavy distortion of a wind 

rose include change of surroundings, relocation of a measurement site or errorneous mixed-up 

dataset. 

TYPES OF INHOMOGENEITIES IN WIND SPEED SERIES 

The ReDistribution Method has detected break points in wind speed series that could be 

sorted by several types. 

Shift up (Figure 8) is one of the most frequent type 

of changes, moving maximum distribution 

frequencies to higher values of wind speed. Lower 

values are less frequent, while higher values of wind 

speed are more present in the dataset. The cause for 

this type of break is generally an instrument replaced 

by one with different calibration. The given example 

of Malin Head, 1962, shows how wind speed 

distribution affected by instrument malfunction. 

Older instrument readings returned a continuous 

variation between zero and the true wind speed 

values, occasionally stopping the instrument 

working properly.  

Shift down (Figure 9) is as frequent a type of change 

as the previously described shift up type. Here, 

maximum distribution frequencies are moved to 

lower wind speed. Higher values are less frequent, 

while values lower than the most frequent wind 

speed are more featured in the dataset. The cause for 

this type of break is the same as the cause for shift 

up type. An example from Claremorris at the 

beginning of 1968, gives a good example of the 

effect of instrument overhaul in May 1967 which 

caused changes in the of wind speed distributions. 

Calms up (Figure 10) is a type of change that 

increases the number of calms, while other wind 

speed frequencies are practically unchanged. The 

cause for this type of change is the increase of 

threshold for instrument initialization, which is 

generally due to enhanced friction. However, the 

reason could not be instrument sheltering by 

obstacles, because such change would distort the air 

flow at the instrument position. The break point in 

Claremorris, 1958, suggested such a problem with 

the anemometer. There are reports in the metadata 

that the instrument was insensitive to winds below 4 

knots and due to this the instrument was overhaul in 
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1967. During the overhaul bad corrosion was discovered which explains the fact that the 

instrument had become less sensitive. Sometimes this type of break might come up with shift 

down type, having the same cause of change. 

Calms down / calms out (Figure 11) is a type of change that reduces number of calms to near 

zero values. This is due to introduction of an instrument with much lower initialization 

threshold. This is often featured in introduction of AWS, like in a given example of 

Claremorris, 1995. 

 

 

 

 

 

Measurement unit (Figure 12) is a type of change featured as ''gaps'' in some categories of 

wind speed. This is due to conversion of measurement unit, like in a given example of Dublin 

Airport, 1944, where  knots were introduced after Beaufort scale estimates. 

 

Irregular redistribution (Petrović, 2004) is any other type of change that is neither described 

here, nor easy to detect any pattern of change. The causes for such breaks include change of 

surroundings, relocation of a measurement site, instrument malfunction or erroneous mixed-

up dataset. Such changes were not found in the data sets from Ireland. 

 

 

HOMOGENISATION POSSIBILITIES 

The ReDistribution Method is primarily a break point detection tool. Since it is based on 

comparison between consecutive distributions of values instead of mean values, present 

homogenisation tools and methods are of a little use. This method has to develop a new 

approach to homogenisation in order to establish proper corrections for distributions of 

values. 

Present homogenisation methods usually return a certain value as a correction factor for the 

inhomogenuous data subset. Additive correction factor could be positive or negative, but 

negative correction returns some values to undefined (negative) range. Hence, present 

methods are not applicable to elements that are defined for no negative values, such as wind 

speed. This factor can also be multiplicative, which avoids such error, but disturbs 
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distributions. Wind speed data are often inhomogenuous by subranges of values (i.e. low and 

initialization threshold values), thus such correction would produce more erroneous data at 

subranges that were not previously affected by inhomogeneity. 

On the other hand, wind direction as azimuth value is an element with strictly defined range 

of values from 0 to 360 degrees, with ability to switch from one limit of range to another by 

definition (when crossing north direction). So far, there are no homogenisation tools that 

could correct such values. Secondly, wind direction and speed are quite independent one from 

another, while inhomogeneities frequently affect both series at the same time, especially when 

a change on surroundings or instrumentation occurs. 

As mentioned, some inhomogeneities of wind speed affect only a subrange of values. 

Homogenisation tool must use a method for correction of distributions. In general, overall 

distributions are easy to homogenise by applying a correction related to distribution of values. 

The real problem is to go to the source values and apply an established correction. That 

correction must be a set of correction values applicable by categories of values, bearing in 

mind that sum of all occurences must be preserved. 

Any possible homogenisation must incorporate mathematical tools that would consider 

distribution (i.e. probability density function) instead of adding / multiplying all 

homogenising values. An investigation of such correction function is in the plans for future 

work on development of the ReDistribution Method. 

RESULTS 

NUMBER OF DETECTED BREAKS 

Investigation of wind direction and 

speed data sets from Ireland by using 

the ReDistribution Method was quite 

successful. Nearly half of all detected 

break points were confirmed by 

metadata (Table 2). Metadata for 

anemometers is currently being 

digitized in Met Éireann. Hence more 

metadata may be available in the 

future (e.g. calibration details). Thus it 

may be possible to confirm more of the breaks in the future. 

ACCURACY OF BREAK POINT DETECTION 

The accuracy of break point detection improves with higher RDI peak values. The highest 

RDI peak value is 0.186 (Birr, 1998), strongly indicating redistribution of wind speed value 

coming from the instrument replacement (introduction of AWS). This break is also detected 

with very short difference between the indicated break point and true change. In this case, the 

precision of break detection was only four days (detected 20
th

 June 1998, true change 24
th

 

June 1998). However, the shortest difference was only two days (Claremorris: detected 10
th

 

September 1995, true change 12
th

 September 1995). 

On the contrary, low RDI values of under 0.100 are generally suspicious breaks and these 

might be taken for real breaks only after metadata confirmation. The lowest RDI break 

recognised as a break point is 0.087 (Dublin Airport, 1994). In such cases, the differences 

between detected and confirmed break extend to 6 months and more. 

type of break

number of 

detected breaks

confirmed by 

metadata

wind direction 27 12

wind speed 47 20

wind direction and speed 19 9

wind direction only 8 3

wind speed only 28 11

total 55 23

Table 2. Overall number of detected and confirmed 

break points in wind data sets from Ireland 
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Some RDI temporal changes return double or multiple peaks of almost the same magnitude in 

a period of time shorter that the data window length. It is not necessary to pick up the highest 

value as the break point, but the closest one to the true break, if metadata are available. Such 

cases indicate problems with observational data that occur for a certain period in time (i.e. 

period between instrument malfunction and its service, multiple breaks in time shorter than 

the power of the method may detect).  

 

 

METADATA 

Metadata information was available for much of the wind data from Ireland. However there 

were some periods without metadata records and also some of the data had not yet been 

digitized. It was presumed that there were no important changes during this time, but there is 

a possibility that some of the metadata is incomplete Metadata were quite valuable when they 

contained the exact date and information about the changes on the measurement site. Such 

metadata are of major importance when the method has to be tested and verified. 

There were also some cases when metadata did not match completely the returned results. 

Also, some of the metadata has not yet been examined/digitised (e.g. calibration lists). It is 

necessary to examine this data in order to get the most complete information possible. In this 

work such cases were left as not confirmed breaks. 

UNCERTAINTIES 

Low RDI peaks often return many uncertain break points. Bearing in mind given causes, the 

next question is the importance of these breaks. Although some of the low RDI peaks are the 

true breaks, it is difficult to decide whether such break point might be neglected and treat 

series as homogenuous at that point. 

Gradual changes (trends) are not certainly detected by the ReDistribution Method. It is also 

difficult to detect slow redistributions of wind direction and / or speed which might be due to 

gradual changes (i.e. tree growth, increase of friction in instruments). For the time being, such 

changes were suspected in periods with increased RDI noise level. Further development of the 

method will show whether this assumption is correct. 

 

COMPARISON WITH KNOWN METHODS (SNHT) 

 

Since there were no methods for detection of inhomogeneities in wind direction data, 

comparison of the ReDistribution Method is made only with wind speed data. The 

comparison method for detection was chosen to be Standard Normal Homogeneity Test 

(SNHT). The hourly data were recalculated to the monthly and annual resolution before they 

were processed. Data gaps were not filled in order not to bias any result returned from the 

SNHT and thus make a correct comparison of the two detection methods. 

The comparison of the results returned that from 47 detected break points using 

ReDistribution Method, 20 were also detected by SNHT. On the other hand, SNHT has not 

detected any new break point that was undetected by the ReDistribution Method. Although 

SNHT has also detected some minor breaks, some major breaks with high RDI values (up to 

0.162, Mullingar, June 1996) were not detected by the comparison method. This might be the 

case with periods with increased RDI values (as it was in the mentioned case). However the 

SNHT depends on homogeneous reference series with high correlation between the reference 

and candidate series and it is not very suitable for use with Irish wind data. 



 51 

Differences in time between detected break points from both methods were not significant in 

annual resolution. SNHT has no ability to detect breaks in any finer than monthly resolution. 

Since the ReDistribution Method has returned better results than SNHT, it is highly 

recommended for further use. 

 

 

PLANS FOR THE FUTURE 

Present experience with the ReDistribution Method has established a basis in break point 

detection with respect to the causes of inhomogeneities. However, these basis have to be 

extended with more experience with the method (more data coupled with metadata). 

The construction of surrogate wind data sets might show the true power of the detection 

method. However, most inhomogeneities are coming from measurement problems, while 

climatic signal (if any detected or suspected) is highly suppressed by the method, making 

difficult to detect gradual changes. Therefore, surrogate wind data sets must include a ''given'' 

climatic singnal, ''cleaned'' from instrumentation problems in order to examine possibilities 

for climatic signal detection. 

Since the ReDistribution Method is capable of operating with more than one series at a time, 

introduction of wind gusts as the third element is also planned. Naturally, wind gusts must be 

strictly defined (10-minute, hourly or daily maximum wind speed) for the whole dataset, but 

this is not necessary for the method in general. Amongst other features, wind gusts depend on 

roughness by directions of the surrounding terrain, which will make calculations a bit more 

difficult. As the first step, it is planned to introduce wind gusts with an approximation of 

evenly distributed roughness from all directions. 

The ReDistribution Method might also have a variation that would substitute 

intercomparisons between subsequent distributions with distributions from two different 

measurement sites. That variation would make the ReDistribution Method capable to work as 

a parallel, relative method. 

Also, the ReDistribution Method is applicable to some other weather elements. Sometimes, 

these elements might not have any climatological sense (i.e. visibility ranges), while any 

inhomogeneity detected with such series might discover a valuable metadata information (i.e. 

change of observer). Such break points might help in full investigation of inhomogeneities of 

other elements that occur at approximately the same time. 

Finally, the possibilities for making a correction method based on distributions is being 

considered. The initial work would be based on a redistribution matrix calculated from the 

changes in distributions and establishing a correction function applicable to the whole dataset. 

Such method would make the ReDistribution more complete. 

CONCLUSIONS 

The ReDistribution Method is the inhomogeneity detection method with a wide set of 

possibilities. It is also able to detect inhomogeneities with very high precision in certain cases. 

Amongst other features, the method also considers the causes of inhomogeneities as crucial 

information. 

Whilst present experience of the ReDistribution Method returns, in general very good results, 

further experience of the method will lead to even better results in determining the causes of 

inhomogeneities. A wider use of the method is the best way for obtaining more experience 

with data from other climate regions (i.e. climate regions with periodic winds) or data that 

have special and presently uninvestigated causes for inhomogeneities. 
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Accuracy of the ReDistribution Method might be better determined after more processed data 

is compared and verified with metadata. Some basic principles are already given, while 

quantitative relations might be established with more detected and verified break points. 

Correction method based on distributions has to be developed and tested with the detection 

method. Corrections that would be detected have to be compared to corrections delivered 

from other, classical homogenisation methods. 

Finally, metadata must be as complete as possible, even with additions delivered from the 

ReDistribution Method findings, if necessary (Petrović, 2007). 
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Abstract 

 
A method for daily interpolation of temperature at classical climate stations, based on the selected past 

events, is discussed. The method was developed due to unsuitable results obtained by simple 

interpolation methods in some cases. The basis of the method is the selection of reference data set 

from the reference period. The reference data set consists of temperature data from the target and 

reference stations in days that are similar to the target day. The similarity is calculated as weighted 

Euclidean distance, considering spatial correlation and spatiotemporal evolution. The reference data 

set is used in the interpolation procedure with the final result being a combination of estimations based 

on each of the reference stations. Preliminary tests have shown more or less significant reduction of 

the standard error compared to the case when all the data from the reference period is used for the 

interpolation. However, we have found it is impossible to infer on local phenomena in some cases, 

resulting in a still considerable error. Incorporation of other types of meteorological data and data from 

the target station should thus further improve the results. 

 

INTRODUCTION 

 

Simple methods for daily temperature data quality control and completion at a meteorological 

station are usually based on measurements at nearby stations and the corresponding climate 

normals. Station climatology used for the data interpolation is the same regardless of the 

weather situation (e.g. sunny, rainy, windy). However, in complex terrain, like in Slovenia, air 

temperature frequently varies significantly on a short distance, depending on the weather type. 

An example of such a case is presented in Fig. 1, where strong precipitation gradient led to 

strong temperature gradient. Among the most frequent cases, when the horizontal temperature 

gradient is particularly strong is, when föhn wind is blowing (e.g. bora from the northeast or 

Karavanke föhn from the north to northwest). Föhn causes pronounced temperature difference 

between the windward and the leeward side of the mountain barrier. Diurnal temperature 

range can also be very different on a particular day from region to region. As the spatial 

density of the network of temperature stations is not sufficient for straightforward 

interpolation in some cases, taking the weather situation into account can improve the 

interpolation result noticeably. In this manner we can infer for example on strong temperature 

inversion from the temperature data at nearby stations although the microclimate at the target 

station is not comparable to any of the nearby stations. 

 

For this reason we have developed a more sophisticated method which is based on the 

selection of measurements according to the weather situation. 
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Figure 1. An example of strong horizontal gradient of daily maximum temperature (yellow) due to daily 

precipitation gradient (blue) on August 29, 2003 (Val Canale flood). Stations below 1000 m MSL are 

marked by a red circle, values with asterisk are the highest hourly values that day. (background from 

http://www.geopedia.si/) 

 

METHOD DESCRIPTION 

 

The method is aimed to give a good estimate of temperature value at a target station on a 

target day. It is a two-step method consisting of the selection of similar days according to the 

weather situation and the interpolation part. 

 

Meteorological variables considered in the method can be classified into three types, with 

regard to their function. A group of variables, called reference variables, are used for the 

selection of the most similar days to the given one. Interpolation is performed using the data 

of one explanatory variable from the reference stations. The explanatory variable is normally 

the same as the interpolated variable, except in cases when no measurements of the 

interpolated variable exist at the reference stations (e.g. only few stations measured daily 

temperature extremes in the early 20
th

 century in Slovenia). 

 

First part of the method is the selection of similar days. The most similar days from the 

reference period are extracted and combined into the group of similar days, which can be of 

arbitrary size. The similarity is determined on the basis of measurements of reference 

variables at reference stations. This measurements can be temperature readings at different 

times and/or extreme values (e.g. at 7:00, 14:00, minimum temperature 21:00–21:00 local 

time (LT) etc.), thus both temperature ranges and spatial pattern could be taken into account. 

 

The second step represents the interpolation procedure, where an estimation of the 

interpolated variable at the target station on the target day is calculated using: 

 

 explanatory variable data from the reference stations in the group of similar days and 

on the target day 

 interpolated variable data from the target station only from the group of similar days  
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As explanatory and interpolated variables can be different, it is possible, for example, to 

estimate the maximum temperature at the target station considering the values at 14:00 LT at 

the reference stations.  

 

Group of similar days 

 

The group of similar days is constructed by using weighted Euclidean distance between all the 

considered temperature measurements at reference stations on the target and a candidate day. 

Weighting is done through Pearson correlation coefficients between the series of the reference 

variables at the reference stations and the interpolated variable at the target station. Although 

more appropriate weights can be found, we decided to use correlation-based weights as the 

iterative process searching the optimal weights could be very time-consuming. Days with the 

smallest Euclidean distance are selected into a group of similar days.  

 

A special issue is a construction of a measure for the degree of similarity, since at least two 

kinds of similarity can be specified in our case, regarding:  

 

1) Absolute values (similar air mass) 

2) Spatiotemporal pattern (similar weather phenomena) 

 

An example showing the difference between the types is presented in Fig. 2. 

 

 
Figure 2. Measured temperature time series (T0) on Rudno polje (Pokljuka) 18–19 July, 2007, and 

arbitrary similar series (T1 - similar absolute values, T2 - similar temporal pattern) 

 

Since the computation of the optimal weights would be very time-consuming, we decided to 

use simple basic weighs, which are used in further computation: 
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where s,v  denotes Pearson correlation coefficient between the series of variable v  at 

reference station s  and the series of the interpolated variable at the target station. Eq. (1) 
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satisfies two fundamental conditions: the weight is 0 when the correlation coefficient is 0 and 

infinity when the correlation coefficient equals 1. Besides, reference stations with very high 

(~0.9) correlation coefficient have many times higher weight than those with weak or 

moderate correlation coefficient (~0.5). 

 

To consider the second type of aforementioned similarity (spatiotemporal similarity), we need 

to calculate average temperature deviation of the candidate day from the target day: 
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where s,v  represents standard deviation of the temperature series in the reference period, d  

indicates a candidate and D  the target day. Since all the considered temperature variables do 

not have the same variance (e.g. daily minimum temperature in Ljubljana is less variable than 

daily maximum temperature), normalised (by s,v ) variables are used. Weighting is done by 

using the power 1p  of the basic weights.  

 

When the average deviation is obtained, we can calculate the normalised weighted Euclidean 

distance between a candidate and the target day: 
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      (3) 

 

where devk  determines the influence of each type of the aforementioned similarities. Weights 

are, as in Eq. (2), powers of the basic weights. 

 

 

Interpolation 

 

 

Two basic ideas were used for the interpolation part of the method. First of all, a link between 

(target station S , interpolated variable i ) and (reference station s , explanatory variable e ) is 

established using the data from the group of similar days. In this way we calculate the average 

difference, s,D , for each combination target station–reference station: 

 

                                            



days.simd

s,d,eS,d,i

s,D

s,D TT
n

1
                                       (4) 

 

where s,Dn  counts the number of considered similar days for reference station s and the target 

day D . It is worth a remark that s,Dn  may differ from station to station, as some data ( s,d,eT ) 

in the group of similar days could be missing. 
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The differences serves as an input for the final equation, which gives us the interpolated 

value: 
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The sum of the temperature at a reference station and the difference s,D  represents a single 

estimation for the interpolated value. All the estimations are weighted by the correlation term 

( 3p

s,e ) and the number of considered days from the group of similar days ( s,Dn ) to obtain the 

interpolated value. The latter term is added to balance the influence of reference stations on 

the interpolation result in cases with a lot of missing data. By the reduction of available 

measurements which are used to determine the difference in Eq. (4) the uncertainty of the 

calculated difference increases, therefore it is better to minimize the influence of stations with 

sparse data. 

 

Near-optimal values of parameters 1p , 2p , 3p , devk  and the number of similar days were found 

by an ensemble run with each member having different combination of the parameter values. 

The combination with the minimum standard error of the interpolated series was determined 

as the best choice. The procedure was carried out for each case separately. 

 

 

Example of use of the method 

 

 

An interpolation of daily minimum air temperature at Ljubljana airport in the period 2003–

2007, based on the reference period 1995–2002, will be discussed as an example of the 

method. Computer programme selected five best-correlated stations, whereas the explanatory 

variable was also daily minimum air temperature. For the gropu of similar days we considered 

temperatures at 21:00 LT the day before, at 7:00 LT and 14:00 LT on the given day and the 

minimum and maximum temperatures. The parameters 1p  and 2p  were set to 1, while 3p  

was set to 2. The results of the most simple method with monthly correction factors used on 

the data from the whole reference period at meteorological station Ljubljana (best-correlated, 

17 km SSE of the target station) are added for comparison. 

 

The first interesting detail in the presented case, which is worth of analysis, is the role of the 

devk  factor. In Fig. 3 we can see the monotonous reducing of the standard error as devk  is 

increasing. In other words, the best result is obtained when only the second kind of similarity 

(similar temperature range and spatial pattern) is taken into account. 
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Figures 3 and 4. Dependence of the standard error to devk  (left) and comparison of the standard error 

through year between the methods (right) 

 

Another question, which has not been discussed yet, is the optimal size of the group of similar 

days and the number of days from the reference period to be considered for each target day. 

Some testing revealed a huge difference from case to case, meaning that the magnitude of 

sample error (large when only few days are considered) and the error caused by the inclusion 

of “non-similar” days (limiting to the most simple methods) is very different for each case. 

Results for 20 and 200 days for the presented case are shown in Fig. 4. 

 

If we take a look inside a part of the interpolated series, we can notice some systematic 

difference between the simplest method and the method discussed in this paper (Fig. 5). The 

former method is better in most days, though the error remains quite high in some days. 

 

 
Figure 5. Comparison of the measured and the interpolated series for March 2004 

 

CONCLUSION 

 

The method described in the paper is able to decrease the interpolation error, but the lack of 

other meteorological data still prevents it to make an adequate estimation of the temperature 

when there is a local phenomenon at the target station we can not infer on using only 

available temperature data. Such cases are the main reason for the large part of the variance 

being unexplained. Thus, inclusion of other meteorological data from the reference as well as 
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from the target station (if possible) would probably result in further significant reduction of 

the error. 

 

Another issue which has to be solved or at least minimized is the choice of the model‟s 

parameter values. There is no simple answer to weighting factors, the size of the group of 

similar days and variables to be included. Test runs have shown that at least some of the 

optimal parameters differ strongly from case to case, while in most cases inclusion of more 

variables and stations yields better results. Iterative process could minimize the problem but 

then the method could become time-inefficient. 

 

The most significant disadvantage or restriction of the method is the necessity of using more 

or less homogenous series at nearby stations. Artificial jumps and temperature trends can 

otherwise seriously influence both the choice of the most similar days and the interpolation 

results. On the other hand this problem is marginal for quality control where small 

interpolation error is not of big importance. 
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INTRODUCTION 

 

 

Air humidity, in other words water vapour content in the air, is characterized by 

various factors. They include, among others: relative humidity, vapour pressure, moisture 

deficit, dew point temperature or specific and absolute humidity. Air humidity is one of the 

more important weather and climate components. It plays a key role in defining the climate 

conditions of a given area. Water vapour content in the air has a decisive influence on 

evaporation intensity, occurrence of precipitation and certain phenomena, such as fog. 

 Variations of humidity parameters over several years are very seldom analysed 

(Dubicka et al. 2003, Wypych 2003). This is caused, among others, by lack of long-term 

hygrometric or psychrometric measurements. The impact of urban areas on the annual and 

spatial variability of air humidity has been researched much more frequently (Ackerman 

1987, Hage 1975, Holmer, Eliasson 1999, Lee 1991). Relatively short series of measurements 

(3-10 years) have been used for this purpose (Chandler 1967, Murinova 1978, Unger 1999). 

The research station of the Institute of Geography and Spatial Management of the 

Jagiellonian University in Krakow, Poland, was established in 1792. It has got one of the 

longest, regular series of measurements and observations of various meteorological elements 

conducted in the same location. The complete documentation of the station, together with the 

metadata, constitutes unique research material. 

The only measurement series to have undergone homogeneity testing thus far are 

series of air temperature, atmospheric pressure and precipitation (Twardosz 1997, Ustrnul 

1997). The homogeneity of air humidity parameters has not been investigated, mainly due to 

the methodical difficulties related to the analysis of numerical material.   

The paper presents the stages and the methods used in order to examine the quality of 

Krakow‟s air humidity measurement series. Daily values of selected air humidity parameters 

calculated on the basis of psychometric measurements were verified.   

 

DATA SOURCES 
 

Air humidity measurements in Krakow commenced at the time of the station‟s 

creation. Initially, hair hygrometers were implemented, including a Saussure hygrometer, 

which operated until 1830. Since 1834, all measurements have been carried out by means of 

an August psychrometer. Thermometers are located in a Stevenson shelter next to a window 

with NNW exposure, second floor level (12 m AGL) of the Śniadecki College building in the 

Botanical Garden of the Jagiellonian University (Fig. 1). Alas, from 1856 until November 

1862, there is a gap in measurements of meteorological elements under analysis. Within the 

last 145 years (1863-2007), all observations of water vapour content in the air have been 

uninterruptedly performed in the same location and using consistently the same method, three 

or four times per every 24 hours (Tab. 1).   
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Figure 1. The Historical Station in Krakow (Śniadecki College building) 

 
Tab. 1. Observation hours in Krakow in the period 1792-2007 

 

Years 
The hours  

of observation 
Time of observation 

1792-1825 6-7, 14-15, about  21 Krakow local* 
1826-1836 7, 12, 15, 21 Krakow local 
1837-1891 6, 14, 22 Krakow local 
1892-1902 6, 14, 22 Cental-European 
1903-1911 7, 14, 21 Cental-European 
1912-1956 7, 14, 21 Krakow local 
1957-1970 7, 13, 21 Cental-European 

1971- to today 1, 7, 13, 19 Cental-European 
* Krakow local time is put back at 20 minutes in relation to Central-European time. Measurements were 

performed in Krakow local time between 6-7 a.m, 2-3 p.m and about 9 p.m., that is Central-European time: 5.40-
6.40 a.m., 1.40-2.40 p.m. and about 8.40. p.m. 

 

METHODS 

 

The first stage of the analysis encompassed a comparison of air temperature (T), 

whose homogeneity had previously been checked, with the appropriate readings of a wet bulb 

thermometer (T‟). Doubtful T‟ values were verified on the basis of the records of current 

meteorological phenomena (fog, horizontal visibility, precipitation). Such doubtful values 

were scarce in the entire series of long-term observations. They were caused, among others, 

by converting the temperature scale, as temperature was measured in the Réaumur scale until 

1876. 

After conversion from Réaumur to Celsius, some readings of a wet-bulb thermometer 

were 0.1-0.2°C higher than readings of a dry-bulb thermometer. Therefore, wet-bulb 

temperature was assumed to be the same as dry-bulb temperature, especially if it was 

accompanied by fog, mist or precipitation. Negative temperatures, when T‟ values may be 

higher than T values, were kept unchanged. 

Subsequently, all the missing data concerning the state of the cambric during the 

measurements (water/ice) were completed. Unfortunately, before 1950 it had not always been 

recorded in the cold half of the year whether the cambric wetting the thermometer was 

covered with ice or water. The presence of ice/water on the cambric has a significant 

influence on measurement results. It is also related to using an appropriate psychrometric 

constant (Tab. 2). Absence of such information means that the resulting humidity parameters 

would be subject to excessive error. On the basis of data from the years 1863-1900, for 
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relative air humidity the estimated error for extreme T‟ values was ±3.6-4.4% (Fig. 2). It is 

slightly higher for positive temperatures of the wet-bulb thermometer and this is why relative 

humidity could be overestimated even by 4.4%. For negative T‟ values, relative humidity 

would be underestimated up to ca. 3.6%. 

 
Tab. 2. Psychrometric formulas used to calculate air humidity parameters  

(Robitzsch 1949; modified) 

ice water 

 

 

 

 

 

 

 

 

 
e – vapour pressure; E – saturation vapour pressure; T – air temperature; T‟ – wet-bulb 

temperature    

 
Figure 2. Difference (%) between relative air humidity values counted using „ice formulas” and „water 

formulas” (-5t5°C) (Krakow 1863-1900) 

To prevent such differences in calculations, the frequency of occurrence of ice and 

water on the cambric for individual air temperatures was estimated. For that purpose, a series 

of measurements from 1971-2000 was used, when the condition of the cambric was 

conscientiously recorded and when thermal and air humidity conditions in Krakow were very 

diverse. This 30-year period included both extremely warm winters, e.g. in 1972/73, when T‟ 

was seldom covered with ice, and very severe ones (e.g. 1962/63) when temperature was very 

often below 0°C. 

Psychrometric patterns permit the presence of ice or water on the cambric when the 

wet-bulb temperature is from -10°C to 8°C. In Krakow, from 1971-2000, at three observation 

times ice was always (100%) reported on the cambric when T was below -4°C and with 

declining frequency until 4°C (0.4%) (Fig. 3). Water appeared on the cambric for 

temperatures T from -4°C (0.4%) to 4°C (96.6%). For temperatures above 4°C, the bulb of the 

wet-bulb thermometer was always wet with water (Fig. 3).  
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Figure 3. Frequency of ice/water cambric state (Krakow 1971-2000) 

 

Those results enable us to fill in missing cambric status information and reduce the 

miscalculation of relative humidity to ±1.5%. It has been assumed that for air temperatures 

T<-3.0°C, cambric on the bulb of the wet-bulb thermometer was covered with ice, similarly 

for temperatures in the range -3.0°C<T<-2.0°C when T‟<-2.0°C. Presence of water on the 

cambric was assumed for air temperatures T>2.0°C while all temperatures in the range -

1.9°C≤T≤1.9°C were compared with current weather conditions. Current synoptic situation 

and cloud cover were taken into account, and 24h time series of air temperature was analysed 

on the basis of hygrograms. Ice on the cambric was reported for all days when temperatures 

remained below zero. 

Psychometric models, identical for the entire series, were used to calculate the value of 

air humidity parameters (Rojecki 1959). On the basis of readings of T and T‟, they help obtain 

values of four humidity parameters: vapour pressure, relative humidity, saturation deficit and 

dew point temperature. At further stages of homogeneity testing of series of data only relative 

humidity was investigated as it is the most frequently analysed humidity parameter. It might 

be assumed that if relative humidity proves homogeneous, other humidity parameters will be 

homogeneous, too, because they had been calculated on the basis of the same T and T‟ values. 

The results obtained in consequence were compared with the values read from 

hygrograms and the readings of the hair hygrometer. At the same time as psychrometric 

measurements, relative humidity was measured using a hygrometer or hygrograph. Extreme 

cases, which gave rise to doubts, were analysed with regard to the records about the state of 

the atmosphere: circulation conditions, the occurrence of foehn and some atmospheric 

phenomena. Krakow is exposed several times a year to effects of operation of foehn in the 

Tatra Mountains which are some 80 km away in a straight line. Krakow‟s relative humidity 

was then even ca. 15%. 

 

RESULTS 

 

The performed homogeneity tests (modified form of SNHT Alexandersson – 

Stepanek, 2007) did not find any cases which would clearly indicate that the series was not 

homogeneous. The controversial values identified in the analysis were subjected to further 

verification. To achieve that, archival records of measurements and meteorological 

observations were used. Corrections of numerical data were not performed. The content of air 

vapour in the air is a resultant of the interaction of numerous factors and processes, which 

need to be taken into account before correcting the values. In light of the lack other objective 

possibilities of verification of air humidity in Krakow, the analysed data were considered as 

relatively homogeneous.  

0%

20%

40%

60%

80%

100%

<-5.0;-4.0) <-4.0;-3.0) <-3.0;-2.0) <-2.0;-1.0) <-1.0;0.0) 0.0 (0.0;1.0> (1.0;2.0> (2.0;3.0> (3.0;4.0> (4.0;5.0>

temperature (
o
C)

fr
e
q
u
e
n
c
y



 64 

Figure 4a shows long-term mean annual relative air humidity in Krakow in the years 

1863-2007. Values have been calculated on the basis of observation times averages (as the 

arithmetic mean of 3 daily readings). 

The turn of the 20
th

 century saw a marked decline in Krakow‟s relative air humidity 

(Wypych 2007). The mean annual relative humidity in that period ranged from 85% in 1871 

to 72% in 1911. Until the 1960s, relative humidity stood at ca. 79% and did not undergo 

significant changes on a year-on-year basis. Then a marked drop of this meteorological 

element was observed. At the turn of the 21
st
 century, average annual relative humidity was 

ca. 70% and was the lowest since the beginning of the period under analysis. To make sure 

that fluctuations in relative humidity were related to fluctuations of Krakow‟s climate and not 

to the non-homogeneous quality of the series of data, results were compared with long-term 

air temperature variation and urban development. 

 

 

 

 
Figure 4. Mean annual relative air humidity and air temperature in Krakow in the period 1863-2007 

 

Until the beginning of the 20
th

 century, the station was located outside the city, to the 

east. At that time Krakow‟s industrial function was weak. From 1792 until 1900, city area 

changed only slightly, from ca. 5 to 8.9 km
2
 (Matuszko et al. 2004). The number of 

inhabitants changed to a much higher extent – it rose from 10,100 in 1785 to more than 

85,000 in 1900. Now the city has a population of ca. 800,000 inhabitants living on an area of 

327,000 km
2
. The years 1918–1939 brought a gradual rise in Krakow‟s economic and urban 

growth, with the greatest changes occurring after the Second World War. The 1950s saw the 

establishment of a centre of heavy industry with a steel mill and residential area with services 

to the east of the city – Nowa Huta. 
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The probable causes of Krakow‟s high relative air humidity until the beginning of the 

20
th

 century were local conditions: location in a weakly ventilated, damp Vistula river valley 

and limited air circulation due to deposition of thermal inversion layers in the concave terrain 

(Matuszko et al. 2003). The gradual rise in the number of inhabitants and higher development 

density contributed to the decline in the city‟s air humidity. After Second World War, land 

improvement of waterlogged areas and expansion of industrial areas resulted in a significant 

drying of the city‟s air (Matuszko et al. 2004). Artificial heat emission into the atmosphere 

contributed to a rise in the dry day‟s rate (Piotrowicz, Wypych 2006; Fig. 5).  

 
 

Figure 5. Number of dry days in Krakow in the period 1863-2007 

 

The decline in relative humidity observed in the period under analysis is well 

correlated with the rise in the average annual air temperature (Fig. 4b). Since the end of the 

19
th

 century, Krakow has observed a constant rise in temperature of 1.5°C every 100 years. 

The causes of changes in meteorological elements under analysis should be also attributed to 

natural factors, mainly to variation of atmospheric circulation reinforced by the operation of 

anthropogenic factors. 

 

CONCLUSIONS 
 

The content of air vapour in the air is a resultant of the interaction of numerous factors and 

processes. Measurement of air humidity, especially using a psychrometer, is prone to a variety 

of errors. The most common reason seems to be erroneous temperature readings – relatively 

easy to correct – and defective maintenance of the psychrometer. It is essential to maintain a 

wet-bulb thermometer in appropriate condition: the cambric should be changed at appropriate 

intervals, the cambric should be the required length and only distilled water should be used to 

wet the thermometer. To obtain objective measurement results, the psychrometer should be 

located away from a water region or any other evaporating surface. An analysis of archival 

and contemporary materials of Krakow‟s climate station indicates that measurements were 

conducted in accordance with recommendations and the status of the wet-bulb thermometer 

was frequently checked. 

The uncommon layout of instruments and change of observation times may give rise 

to many more doubts about data quality. Non-standard conditions at the level of 12 m AGL 

play an essential role in modifying temperature-humidity relationships. In the 18
th

 and 19
th

 

centuries, meteorological equipment was very often located in such places, e.g. in the Prague 

Klementinum station. However, it is extremely important that Krakow‟s Stevenson shelter has 

never been moved. In 1958, a new instrument shelter was added, now at the standard height 

of 2 m AGL. Therefore, it is possible to compare both series for the last 50 years. 
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Changed times of readings are especially important for summer humidity 

measurements. Heino (1994) proved that evening and morning observation times have the 

greatest importance. Differences in calculations of the mean daily relative humidity may reach 

3-4%. In Krakow, reading times in periods of air humidity measurements changed eight 

times, with the greatest differences relating to the evening reading (180 minutes). 

Another important factor affecting the quality of available source material are the 

surroundings of the meteorological station. The Krakow station has never changed location. 

When observations were started, the area was located on the outskirts of the city, enclosed 

only by scattered buildings. Now, due to the city‟s dynamic growth, it is situated in the centre, 

at the crossroads of busy arterial roads. Additionally, it is within the Botanical Garden 

founded in 1783. With the passage of time, the garden expanded (from 2.4 to 9.6 hectares) 

and its development changed too – the number and diversity of species grown there rose as 

well. 

Due to potential measurement and calculation errors described, results obtained should 

be appropriately verified. Quite often it is not possible on account of new observation times 

and station‟s environment. Therefore, existing air humidity variation studies have been in 

general based on short series which provide a relative guarantee of homogeneity. However, 

they are not sufficiently representative to define development trends. 

Global climate change, widely discussed in recent years, can be described only thanks 

to in-depth studies aimed at an analysis of long-term variation of basic meteorological 

elements. The big-city location of meteorological stations which have long measurement 

sequences leads to error-prone readings, with the error being related to the dynamic change in 

local conditions. Studies based on data from relocated stations also raise a variety of concerns 

– on account of more or less successful attempts at standardization of material. 

An in-depth analysis of source material, which encompasses 145 years of 

meteorological observations carried out without a break in one place in Krakow, enables to 

say that data available is relatively homogenous. With such a long-term series of data, ranging 

from the beginnings of instrumental measurement, it is impossible to completely avoid certain 

inhomogeneities. However, any attempts at data improvement could be erroneous and destroy 

the originality and substantive value of the series. 
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Abstract 
 

The water vapour content in the atmosphere has got fundamental meaning for the ozone 

chemistry and photochemical processes of its destruction. Thus the research of its variability is of 

crucial importance, particularly in the levels of upper troposphere and lower stratosphere (UTLS). 

Another important issue is to investigate the processes of water vapour transport through the 

troposphere. The most reliable source of information on the relative humidity (RH) the results of the 

radiosonde measurements conducted in Poland since the 30-ties of the 20
th
 century. Unfortunately, the 

numerous changes of radiosonde types influence the homogeneity of the RH series. The registers of 

RH obtained from the simple humidity sensors (MARZ, RKZ) used in Polish aerological service till 

the 90-ties are  somewhat greater than the data from the following period. Since 1992 in Poland 

Vaisala radiondes are used to measure RH in the profile of atmosphere. However, the change of the 

radiosonde type in June 1999 (RS-80A to RS-90) caused the break of homogeneity of the series. 

 For correction of RS-80A's relative humidity (RH) data series, four methods have been used, 

available in the literature. The correction equations result from comparison of measurements of 

different sensors or of laboratory measurements. The results of the comparisons show that the method 

evaluated in Lindenberg (Germany) for dr Leiterer‟s team, is the best one for our series correction 

purposes. 

For correction of MARZ‟s and RKZ‟s relative humidity data series (measurements from 

before 1992), method dr Leiterer‟s team from Lindenberg have been used. Values of RH with 

correction expending more reliability, but still the data series are not homogeneous in all isobaric 

levels in troposphere. 

INTRODUCTION 

Water vapour is measured in the atmosphere from multiple platforms with a large variety 

of sensors. The instruments developed in more recent years. The measurement of upper 

tropospheric water vapour by radiosondes is, however, fraught with numerous problems. In 

the stratosphere, the most commonly used in situ water vapour measurement instruments have 

shown significant biases between each other. As a result of correlative measurement 

programs, special intercomparison activities and algorithm improvements, discrepancies 

between measurement systems have been better quantified. 

HUMIDITY CORRECTION METHODS FOR RS-80A RADIOSONDE 

In the first step of homogenisation,  data from Vaisala radiosondes was smoothed 

using a 12-month moving average. The figure 1 presented the humidity row and smoothed 

series for three polish radiosounding stations – Leba, Legionowo and Wroclaw.  

 

 



 69 

 

 
Figure 1. Humidity series for Leba, Legionowo and Wroclaw for row (left) and smoothed (right) data 

 

 

For correction of RS-80A's humidity series, four methods have been used, available at 

literature. The correction equations are results of comparison of measurements from different 

sensors or of laboratory measurements. Two of correction methods depend not only on 

temperature, but also on actual humidity. One of these methods (Leiterer, 2002), taking into 

account climatological data (Lindenberg, Germany), seems to be best one. Only this 

correction „repairs‟ acceptably, smaller values of humidity, detected by RS-80A radiosonde. 

Applied correction formulas have been inserted in Appendix A. 

The Figure 2 shows humidity series for Leba (January 1992 – December 2007), 

Legionowo (July 1993 - December 2007) and Wroclaw (January 1993 - December 2007) at 

00 UT for uncorrected and corrected series using the all correction methods. 

Humidity series looks better with, than without correction. It seems that majority 

corrective methods rest on simple shift to part of highest value only. They behave better in 

bottom tropospheric levels and worst heigher. The corrective methods dependent on more of 

factor have been checked much better than dependent on only temperature. The „Wang‟ and 

„Leiterer‟ methods, especially in the UTLS region, where underestimated values of humidity 

from RS-80A have increased after correction, making the series less inhomogeneous than 
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others. And so farthers verification methods have been employed only for these two 

corrections. 

 

 

 
 

Figure 2. Humidity series for Leba 01.1992 – 12.2007 (left column), Legionowo 06.1993 – 12.2007 (middle 

column) and Wroclaw 01.1993 – 12.2007 (right column) at 00 UT 

 

The subsequent step of choice of most reliable correction method was observing the 

humidity data at the 9 geopotential surfaces from 1000hPa up to 200 hPa and counting trend 

for all of these levels [ % / year ]. The figure 3 presents humidity series with trend at three 

chosen surfaces with „Wang‟ and „Leiterer‟ correction. The dominance of „Leiterer‟ 

correction over „Wang‟ one is observed. Values of humidity measured with RS-80A sensor 

corrected by „Wang‟ method seem to be overestimated than the humidity series form 

radiosondes RS-90 and RS-92, particularly at higher altitudes. Humidity series data with 

„Leiterer‟ correction seems to be compact with humidity measured with RS-90‟s sensors.  
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Figure 3. Humidity series for Leba (left panels), Legionowo (middle panels) and Wroclaw (right panels) 00 

UT. The figures present humidity series with trends uncorrected (black line), corrected „Wang‟ (blue line) 

and „Leiterer‟ (red line) methods at three chosen goepotential surfaces: 700hPa, 500hPa and 250hPa. 

 

 

HUMIDITY CORRECTION METHODS FOR MARZ AND RKZ RADIOSONDES 

In view of good quality of corrective method processed by dr Leiterer‟s group (Lindenberg, 

Germany) for measurements execute with radiosounds RS-80A for correction of quality data 

from soviet radiosounds MARZ and RKZ, the corrective method processed also by Leiterer‟s 

group have been used. This method emerge on base of comparison humidity data from 

radiosonding and satellite measurements.  

 

The Figure 4 shows humidity series for Leba (January 1973 – December 2007), 

Legionowo (March 1971 - December 2007) and Wroclaw (August 1990 - December 2007) at 

00 UT for uncorrected and corrected. We saw that correction methods correct quality of data. 

After correction there is lack of distribution for uncorrected and corrected series. 
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Figure 5. Humidity series for Leba, Legionowo and Wroclaw at 00 UT for uncorrected (left column) and 

corrected (right column) data 

 

The next step was observing the humidity data at the 5 geopotential surfaces from 

1000hPa up to 400 hPa and counting trend for all of these levels [ % / year ]. The figure 5 

presents humidity series with trend at three chosen surfaces. Humidity series looks better 

with, than without correction. Unfortunately, received results have exerted, that employed 

corrective method, it does not eliminate completely the differences among data from soviet 

and Finnish radiosounds. Results are different for each geopotential level and each station 

however, it get no completelely similar series. Additional opposite sign of trend of humidity 

from soviet and finnish radiosounds on many surfaces have been visible, that makes 

impossible obtainment of similar series. In final effect still has been show that series of 

measurement of humidity is uncontinuous at change of sensor. 
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Figure 6. Humidity series for Leba (left panels), Legionowo (middle panels) and Wroclaw (right panels) 00 

UT. The figures present humidity series with trends uncorrected (black line) and corrected (red line) data 

at three chosen goepotential surfaces: 700hPa, 500hPa and 400hPa. 

 

CONCLUSIONS 

o For homogenisation of humidity data from Vaisala radiosounds (RS-80A, RS-90 and 

RS-92) four correction methods have been chosen for correction data from RS-80A 

radiosounds.   

o Two methods („Wang‟ and „Leiterer‟) were submitted for further studies.  

o Analyses of humidity trends on different goepotential surfaces show dominance of 

„Leirerer‟ correction over „Wang‟ one. 

o For homogenisation of humidity data from soviet (MARZ and RKZ) and Finnish (RS-

80A, RS-90 and RS-92) radiosounds the correction methods execute by Leiterer‟s 

group have been chosen for correction data from soviet radiosounds.     

o Adopted method ameliorates quality of data however, there is still not so good so as 

data after correction can become subject climatic analyses. 

 

 

APPENDIX A: MATHEMATICAL BACKGROUND 
 

The RS80-A is subject to several sources of measurement error, and correction of the 

individual measurement errors is an alternative approach for correcting RS80-A data that is 

under development. A "temperature-dependence error" is caused by using a linear 

approximation in the data processing algorithm to represent the actual non-linear temperature 

dependence of the sensor calibration, and is, in general, the largest RS80-A measurement 

error at cold temperatures. 
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The first correction factor for temperature-dependence error has been derived from 

laboratory measurements conducted at Vaisala. The magnitude of the correction factor is 

about 1.1 at –35°C, 1.4 at –50°C, 1.8 at –60°C, and 2.5 at –70°C. (Sparc, 2000) 

Hcorr = (-2∙10
-5

∙t
3
 - 0.0021∙t

2
 - 0.089∙t - 0.3) ∙H „Vaisala‟ (A1) 

A recent study by Miloshevich et al. [2001] characterised RH measurements from 

Vaisala RS80-A radiosondes, the most frequently used radiosonde in the world, and 

developed a correction for the measurements in the temperature range 0˚C to –70˚C. 

Hcorr = H ∙ G(t)     „Miloshevich‟ (A2) 

G(t) = (3.9407∙10
-8

) ∙t
4
 + (1.8179∙10

-6
) ∙t

3
 + (1.5783∙10

-4
) ∙t

2
 + (-5.9662∙10

-3
) ∙t + 0.9278                                                                                               

(A3) 

Another correction methods were processed by Wang et al. [2002] on base of 

measurement collected during the Tropical Ocean and Global Atmosphere (TOGA) Coupled 

Ocean–Atmosphere Response Experiment (COARE).  The temperature dependence error for 

the RS-80A results from an approximation of a linear function of temperature to the actual 

nonlinear temperature dependence of the sensor, and also introduces a dry bias. 

t
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A new measuring and evaluation method has been developed at the Meteorological 

Observatory Lindenberg by Leiterer et al. [2002]. Research reference humidity radiosondes 

are the experimental basis using the new measuring and evaluation method of so-called 

"standardised frequencies". 
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t    temperature in Degree Celsius (°C) 
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INTRODUCTION 

 

The analysis of precipitation series is crucial in the assessment of climate change in the 

Mediterranean area, in order to understand its impacts on ecosystems and human activities, 

and to provide reliable information for the definition of adaptation strategies. In this context 

the Italian Research Institute for the Environment – ISPRA (formerly National Environmental 

Agency APAT) developed a computerized system for the collection and elaboration of 

statistical data on the Italian climate, denominated SCIA (Desiato et al., 2007). In this system 

rough data, coming from national and regional meteorological networks, are collected and 

quality checked; the outputs, e.g. ten-daily, monthly and annual indicators, are available on 

the web site: www.scia.sinanet.apat.it. 

In this study a set of 59 stations (fig. 1), belonging to the Air Force Weather Service 

and some regional environmental agencies and characterized by temporal continuity and high 

quality, was selected. Data underwent a quality control procedure and outliers were discarded; 

afterwards monthly series were elaborated. Time series of climatic variables, as temperature 

and precipitation, may be affected by non-climatic factors, that can hide or alter the climatic 

signal; therefore, a 3-step homogenization procedure was applied to monthly series.  

 

 

 

Figure 1. Map of the 59 stations 
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METHODS 

 

Hourly data underwent a weak climatological control and a consistency control, through the 

check of a variable with other related variables (e.g. temperature and dew point temperature). 

Outliers were detected applying filters, build up as a function of latitude and season, and 

performing a spatial comparison (Baffo et al. 2005, Eisched, 1995). Monthly values were 

calculated only if 90% of daily precipitation data are valid.  

The homogenization of precipitation still remains a difficult task, moreover it is 

important to avoid over-correction; therefore a 3-step procedure was applied to the monthly 

series. First of all, in order to obtain a preliminary idea of the behaviour of the log series, an 

absolute method was chosen: the Kolmogorov Zurbenko Adaptive filter KZA (Zurbenko et 

al., 1996). It is an iterative moving average filter that dynamically adjusts its moving length. 







)(

)(

1

)()( )(
tH

tT

q

qi

ittTtHt XqqY  

where X denotes the original series and )(tHq  and )(tTq  depend on 

})](max[)({1))(( tDtDtDf  ; D is a function of the Kolmogorov Zurbenko filter (Rao and 

Zurbenko, 1994; Zurbenko, 1986) applied to X. The possible inhomogeneities are located in 

correspondence of the sample variance peaks. Figure 2 shows an example of this method 

applied to a series recorded at Latronico, a synoptic station located in Southern Italy. In the 

upper plot the thin line denotes the log series of monthly precipitation, while the thick line 

represents the KZA output; the lower plot shows the sample variance and a significant peak in 

1957/8 is evident.  

 

 
Figure 2.  An example of the KZA application  
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The second step involves a modified version of the well-known Standard Normal 

Homogeneity Test (Alexandersson and Moberg, 1997). A moving window approach was 

implemented, using a window length of 12 years, but discarding the inhomogeneities detected 

in the first/last four years. The modified SNHT was applied to the log ratio series, building up 

the reference series with at least three stations, chosen using the best correlation criterion 

(Peterson and Easterling, 1994) and putting some geographical limitations.  

The identified shifts underwent the third step of our procedure: the Multi Response 

Permutation Procedure MRPP (Easterling and Peterson, 1994; Mielke et al., 1981). It is non 

parametric and it was implemented choosing a window length of 96 values (centred at the 

inhomogeneity point). It is based on a standardized version of the following statistic and on a 

partition of K elements in g subgroups:  





g

i

iiC
1

 , KnC ii   

Where ni denotes the cardinality of the i-th subgroup, i  the average distance (using the 

Euclidean distance) for all elements belonging to the i-th subgroup. Figure 3 illustrates an 

example: the synoptic station Enna in Sicily before (red line) and after (grey line) the 

homogenization, indeed an inhomogeneity was detected by the procedure in November 1964.  

 

 
Figure 3. Enna series before (red line) and after (grey line) the homogenization 

 

 

RESULTS 

 

 

After the homogenization of the 59 monthly precipitation series, they were transformed in 

standardized anomaly series (Jones and Hulme, 1996), using as reference period 1971 – 2000. 

Afterwards, annual and seasonal series were calculated; the former considering the year from 

December to November, the latter applying the meteorological definition of seasons. Finally, 

the series were aggregated, in order to achieve three series for the following sub-areas: 

Northern, Central and Southern Italy. In the case of annual series no significant trends were 

identified. On the contrary, Northern winter series has a decreasing trend since 1961 and 

Centre winter series is characterized by a positive trend since 1998 (it might be confirmed in 

next years, when more data will be available). 

The same calculations were carried out also for the original series, trying to understand 

the impact of the homogenization on the final output, which was used for trend identification 

and further climatological analysis. As for annual standardized series, absolute values of 

differences (between homogenized and original series) do not overcome 0.5, with greatest 

values in Central Italy and smallest values in Southern Italy (fig. 4 and fig. 5). 
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Figure 4. Comparison of annual standardized series before and after the homogenization 
 

 
Figure 5. Boxplot of the differences between original and homogenized annual series 

 

In Northern Italy there are not great differences between homogeneous and original series, 

especially during autumn (fig. 6, fig. 7 and fig. 8); all values belong to (-0.5, 0.3).  
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Figure 6. Comparison of seasonal standardized series, before and after homogenization in Northern Italy 

(winter and spring) 

 

Figure 7. Comparison of seasonal standardized series, before and after homogenization in Northern Italy 

(summer and autumn) 
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Figure 8.Boxplot of the differences between original and homogenized seasonal series in Northern Italy 

 

In Central Italy differences are small, but winter 2000 with a value of about 0.6; spring 

values, with three exceptions, are concentrated around zero (fig. 9, fig.10 and fig. 11). 

 

 
Figure 9. Comparison of seasonal standardized series, before and after homogenization in Central Italy 

(winter and spring) 
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Figure 10..Comparison of seasonal standardized series, before and after homogenization in Central Italy 

(summer and autumn) 
 

 
Figure 11. Boxplot of the differences between original and homogenized seasonal series in Central Italy 

 

Finally, in Southern Italy there are not remarkable differences, except some high values, as 

summer 1999 (with a value of about 1) and winter 1996 (with a value of about 0.6). Figures 

12, 13 and 14 show these results. 
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Figure 12. Comparison of seasonal standardized series, before and after homogenization in Southern Italy 

(winter and spring) 

 
Figure 13. Comparison of seasonal standardized series, before and after homogenization in Southern Italy 

(summer and autumn) 
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Figure 14. Boxplot of the differences between original and homogenized seasonal series in Southern Italy 

 

 

CONCLUSIONS 

 

 

In order to obtain a set of high quality precipitation series for climatological analysis, 59 

monthly series well distributed over the Italian territory were homogenized applying a three 

steps procedure: KZA, modified SNHT and MRPP. The application of these different 

methods should avoid overcorrection, preserving the true climatic signal. However, it is 

important to underline that the homogenization of precipitation is still a tricky question. Our 

ongoing research concerns the investigation of other methods, the introduction of pairwise 

comparison in the procedure and the homogenization of daily series. 
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Abstract 

 
The use of homogenized meteorological data time series is very important for all climate analyses 

because artificial shifts can cause misleading conclusions that do not correspond to real climate 

changes. Until recently, the homogenization of Croatian meteorological data series was carried out 

only sporadically. However, since Croatia joined the HOME COST Action ES0601, we have started 

dealing more intensively with the issue of homogenization. 

This paper outlines the preliminary results of homogenization of some Croatian temperature data 

series. Two methods of homogenization were used and the results were compared. One of the methods 

used was Multiple Analysis of Series for Homogenization - MASH v3.02 and the other one was 

Standard Normal Homogeneity Test - SNHT applied with the AnClim software. Those two methods 

were applied on the data series from nine stations situated in the northwestern part of Croatia. Both 

methods gave similar results in detecting break points with quite a high accordance with the existing 

metadata. Furthermore, three stations were chosen for comparison of homogenized data series. 

Differences between values obtained by each method were negligible, but more detailed analysis of 

those results is required in the future. 

 

INTRODUCTION 

 

Homogeneous time series of climatic elements are essential for all studies concerning climate 

variability. Inhomogeneities caused by station relocation, instrumentation changes, changes in 

methods of calculating monthly means, etc. (e.g. Peterson and Easterling 1994; Jones 1995) 

can mask real trends and variability. In practice, it is difficult to preserve the permanence of 

all observation elements. Because of that many long-term time series contain inhomogeneities 

that must be adjusted before any comprehensive analysis for climatic variations 

(Alexandersson 1986; Karl and Williams 1987; Peterson and Easterling 1994; Jones 1995; 

Heino 1997; Peterson et al. 1998). 

The intention of this paper is to compare two different homogenization methods Multiple 

Analysis of Series for Homogenization (MASH) and Standard Normal Homogeneity Test 

(SNHT) in order to evaluate the effectiveness of the procedures for breakpoints detection and 

time series adjustment. 

 

Homogenisation in Croatia 

 

Until recently, the homogenisation of Croatian meteorological data series was carried out only 

sporadically (Volaric 1982, Juras 1993, Likso 2004). Lately, in the Meteorological and 

Hydrological Serivce (MHC) of Croatia none of the methods of homogenisation is applied 

operationally. Recently meteorologists from the MHS have joined the COST Action ES0601 - 

Advances in homogenisation methods of climate series: an integrated approach (HOME, 

2007-2011), and also have started a bilateral cooperation with the Hungarian Meteorological 

Service the project "Harmonization of homogenisation and interpolation methods" 

(2007-2009). As a consequence meteorologists in Croatia have started dealing more 

intensively with the issue of homogenization. 
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Croatian meteorological network 

The meteorological observations in Croatia date back to the second half of the 19
th

 century. 

Figure 1 shows how the network of stations developed from 1850 to 2000. A big drop in 

number of stations that occurred in 1991 is due to the war in Croatia which started at that 

time. Nowadays, the network consists of 41 main meteorological stations, 116 climatological 

and 336 precipitation stations. Some of them have series of more than a hundred years of 

observations. There are also 2 upper-air stations, 8 radars and 34 automatic stations. Figure 2 

shows the spatial distribution of main and climatological stations.  

 
Figure 1. Temporal evolution of Croatian meteorological network 

 

 

 

DATA AND METHODS 

 

In this study monthly mean air temperature series from 9 stations from the northwestern part 

of Croatia were chosen for analysis (Figure 2). The period 1961-2006 was chosen as the 

longest one for which the data was available for all the stations. The data series were quality 

controlled according to the MHS quality control procedure (Rasol et al. 2007).   
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Figure 2. Spatial distribution of main (red) and climatological (black) stations and the list of stations 

chosen for this study 

 

Break points were found and data was homogenized with two methods for relative 

homogeneity testing and the results obtained by each method were compared.  

One method used here for the homogenization of temperature data is Multiple Analysis of 

Series for Homogenization, developed by Tamas Szentimrey in the Hungarian Meteorological 

Service (Szentimrey 1994, 1995, 1996). That procedure does not assume a reference series is 

homogeneous. Break points are detected and adjusted through mutual comparisons of series 

within the same climatic area. The candidate series is chosen from the available time series 

and the remaining series are considered as reference series. Several difference series are 

constructed from the candidate and weighted reference series.    

The other method is described in Alexandersson (1986) and Alexandersson and Moberg 

(1997), known as the Standard Normal Homogeneity Test applied with the AnClim software 

(Stepanek, 2005). This procedure requires a homogeneous reference series. The reference 

series should ideally consist of meteorological data from several stations where the climate 

variations resemble those at the test station. Reference station should be located in a region 

with the same climatic characteristics as the test station. The number of reference stations 

should be large enough to eliminate eventual inhomogeneities in the reference data. In 

general, reference series have been constructed as a weighted average of the data from 

reference stations. The weight factors are the correlation coefficients between the test series 

and the series from reference stations. 

As the testing was performed on the temperature time series, the differences between test and 

reference series were considered. The SNHT test is based on the likelihood ratio test with the 

assumption that there is at most one break point in the series. The test for a single shift cannot 

properly handle series with many break points (Alexanderson and Moberg 1997). In this 

paper, if a break point was detected, it was adjusted by calculating an adjustment factor (the 

Bjelovar 

Karlovac 

Koprivnica 

Krizevci 

Sisak 

Slavonski Brod 

Zagreb Gric 

Zagreb Maksimir 

Varazdin 
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difference between the test series and the reference series). The test was repeated to detect 

further break points, until the series is considered homogeneous. For a homogeneous time 

series, the test statistic should not exceed a critical t-value on a specified confidence level.  

 

 

RESULTS 

 

Table 1 shows the breakpoints detected by MASH and SNHT. Quite a lot of breakpoints were 

found by both methods. The years for which there is a justification for the breakpoint in the 

metadata are bolded. Both methods detected all, from metadata known breakpoints, as well as 

additional ones. The accordance between mentioned procedures for breakpoint detection was 

very high. There were some minor changes found in the metadata that were not detected, but 

we can not be sure that those changes could really cause significant breaks in data series.  

 

 
Table 1: Breakpoints detected by MASH (blue) and SNHT (red) 

 

Bjelovar 1969 1981 1983 1989 1998 2001 2003 2004  

1969          1983 1989 1998 2001          2004 

Karlovac                   1992 1993 1994 1999 2000 2001 

1965 1984 1992                            2000 2001  

Koprivnica 1964     1967              1999 

    1965 1967 1980 1998 

Krizevci 1980 1982 1984              1994 1995          2000 

     1981              1986 1993              1997 2000 

Sisak 1964 1969 1971          1984 1989 1996 

1964 1969          1979 1984          1996 2001 

Slavonski Brod 1969 1974 1986 1991 1994 1996 

1969          1986 1991          1996 1998  

Zagreb Gric                  1982         1989 1992 1998 

1967 1972         1984 

Zagreb Maksimir 1981 1987 1989 1991          2002 

1981                   1991 1995 2002 

Varazdin     1971                   2000 

1970     1987 1989 2000 

 

 

 

Figure 3 shows the results of adjusting with MASH and SNHT method for Zagreb Gric 

station. Zagreb Gric temperature series is almost homogeneous, there were some very small 

changes in series but none of the breakpoints have justification in metadata. 
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Figure 3: row data (black), SNHT homogenized data (red) and MASH homogenized data (blue) for 

Zagreb Gric station 

 

The same for Zagreb Maksimir station is shown in figure 4. Both methods detected two 

breakpoints documented in the metadata. The first one was in 1981 when an annex to a 

factory near the station was built. The second one occurred in 1991, when indoor sport 

facilities were built near the station.  

 
Figure 4: row data (black), SNHT homogenized data (red) and MASH homogenized data (blue) for 

Zagreb Maksimir station 

 

Figure 5 shows the results of adjusting for Karlovac station. Both methods have made very 

similar adjustments and detected two break points documented in the metadata. The first one 

was in 1992 when the station was relocated from the city center to a suburban area. That 

relocation caused a huge inhomogeneity. The second one occurred in 2001 when the 

instruments screen was moved around 50 m from the previous location.  
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Figure 5: row data (black), SNHT homogenized data (red) and MASH homogenized data (blue) for 

Karlovac station 

 

The differences between the MASH homogenized and SNHT homogenized series (Figure 6), 

for all three stations are very small, mostly less than 0.1°C and the largest is 0.2°C what is 

still very good accordance. From this it cannot be said which method would be better to use. 

 
Figure 6: Differences between MASH and SNHT homogenized for Zagreb Gric (violet) Zagreb Maksimir 

(orange) and Karlovac (green) stations 

 

Figure 7 up shows the place where Karlovac station was situated until 1992, it was in the 

middle of the city with the high urban impact, and the figure 7 down shows the new position 

after the relocation in 1992. The green arrow shows the position of the instruments screen in 

the period from 1992 to 2001 and the red one the position after 2001 which is around 50 m 

from the previous one. It is obvious that the position after 1992 is completely different, being 

out in the fields and far from any urban impact.  
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Figure 7: Position of the Karlovac station until 1992 (up) and after 1992 (down) 

 

Figure 8 shows differences between yearly mean temperatures at Karlovac station and at all 

reference stations. There is a big drop in 1992 and another one in 2001. It is obvious that after 

relocation temperatures at Karlovac station became higher what is in accordance with the 

location differences. 
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Figure 8: Differences between yearly mean temperatures at Karlovac station and at all reference stations 
 

Trends 

 

To get an impression of the difference between using original and homogenized data linear 

trends for Karlovac station are shown in figure 9. The slope of homogenized data is much 

steeper what shows the importance of homogenization of meteorological time series. 

 
Figure 8: Linear trends for row and homogenized temperature time series for Karlovac station 

 

CONCLUSIONS 

 

Both MASH and SNHT methods for all studied stations detected all breakpoints known from 

metadata, as well as some other undocumented discontinuities. The differences between 

homogenized series obtained by each method were negligible. For Karlovac station it is still 

to be discussed if it is better to homogenize the series according to the most recent data or the 

data before the relocation in 1992. The question to be addressed is which part of the series is 

more representative for the region so the more detailed analysis of the presented results is 

required in the future. 
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INTRODUCTION 

Climate data series are based on meteorological observations, following a set of rules, with 

regard to type of instruments, exposure, representativeness of station location and data 

recording procedures, amongst others. The history and evolution of observing networks show 

examples of a variety of changes, for instance, changes on instrument type, on instrument 

performance (calibration) and data procedures.  

In recent years, Portugal, following a global trend, introduced changes in meteorological 

observation methods, especially due to the automation of the data acquisition and 

transmission procedures. Parallel observations with co-located conventional and automatic 

instruments in several sites, result in sets of overlapping data for various meteorological 

elements, now available for analysis. 

In the present work, we study possible impacts on time series continuity originated by 

changes in observation procedures.  

The present work plans to extend studies developed for the maximum temperature for two 

locations and years (Nunes, 1996) and for minimum and maximum temperatures and 

precipitation for a pair of years (Silva, 2001), by characterizing significant differences 

between automated and conventional stations in space and time. With the extended series of 

records analysed here, based on a set of 30 sites, we can start to estimate the impact of 

observation changes on climate series and monthly values. Comparisons with 1961-1990 

Normal values and statistical indices were made to evaluate the significance of differences 

between both series. 

 

DATA 

The data used were acquired from 30 stations chosen from the Portuguese Network, in places 

were there was a overlap exposure of both automated and conventional systems, for periods 

ranging from 5 to 10 years. 

In Figure 1 we can observe the station spatial distribution, type, and climatic classification. 

Principal or synoptic stations, operated by professional personnel and for synoptic hours, are 

represented in black. Simpler stations, operated by volunteers with a more basic background 

in observing procedures, are represented in blue. The observing time in this station type is 09 

UTC.  

The climatic classification assured a relatively good special resolution and representativeness. 

Table 1 represents the overlapping period for each station and the date of beginning of 

operations for the conventional stations.  

 

It is possible to observe that the overlapping periods are different for different stations and 

one can evaluate the importance of the present work from the date of the beginning of some 

of the Conventional Weather Station (CWS), which, in some cases, date from the 19
th

 century. 
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Parameters presented in the present work are air temperature at 09 UTC (T009), minimum 

(Tmin) and maximum (Tmax) air temperatures, recorded between 09-09 UTC. 

 

 

MISSING DATA 

One of the most significant problems that the present study faced was related to missing data. 

In fact, both systems had a significant number of missing data. In the Automatic Weather 

Stations (AWS) the problem is related to power supply and data communications. On the 

other hand, in CWS the problem is related to the decreasing number of professional personnel 

handling the principal stations. Overall, data failure is lower for principal stations than in the 

simple stations. The main factor for this difference is related with power supply in simple 

stations, which are solar powered. In winter days, the exposure of the solar panels is shorter, 

therefore, the batteries have a lower autonomy. 

 

METHODOLOGY 

Statistics, such as average, standard deviation, root mean square error (RMSE), and 

correlation coefficients, were computed for both automated and conventional series, as well as 

for the difference between them. 

To compare these indices, statistical tests were made, especially over the mean values. A 

subjective analysis was made over the stability of the differences and the spatial distribution 

of the bias during the overlapping periods, based on visual inspection of results. 

For climatic purposes, it became necessary to compare monthly data, retrieved from both 

series. Mean and extreme values were compared trough statistical testing for significance 

 

 Table 1. Stations and overlapping periods 

Nr. Begin 

CWS 

Overlap 

start 

Overlap 

end 

End CWS 

531 07/1922 07/1997 12/2006  

535 01/1836 07/1999 12/2007  

541 11/1988 07/1997 12/2007  

543 07/1969 06/1998 02/2006 02/2006 

548 04/1995 06/1998 12/2007  

551 11/2005 11/2006 12/2007  

557 01/1869 01/2002 12/2007  

558 04/1995 06/1997 12/2007  

560 04/1991 06/1997 12/2007  

562 01/1873 07/1997 04/2004 04/2004 

567 02/1992 06/1997 12/2007  

568 01/1931 01/1998 12/2007  

570 05/1985 05/1998 12/2007  

571 01/1932 06/1997 12/2007  

575 03/1931 06/1998 12/2007  

579 01/1982 06/1997 12/2007  

605 08/1967 06/1998 12/2007  

611 01/1879 01/2000 12/2007  

619 01/1980 07/1997 12/2007  

632 01/1924 01/2000 12/2007  

635 01/1932 01/2000 11/2001 11/2001 

685 01/1954 06/1998 08/2002 08/2002 

702 10/1980 07/1998 12/2007  

744 05/1977 05/1997 08/2007  

770 01/1924 05/1997 12/2007  

783 11/1933 05/1997 12/2006  

812 01/1948 01/2000 12/2007  

835 01/1927 05/1997 12/2007  

850 05/1963 05/1997 06/2007  

864 06/1982 05/1997 12/2004  
 

Figure 1. Distribution of the station type and 

climatic classification 
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levels of 1 and 5%. These values were also compared with the proportions obtained from 

several climatic indices retrieved from 1961-1990 Normal values. 

 

RESULTS 

Results are presented in two parts: An heuristic part, with analysis of figures, and an objective 

part, including tables with statistics. 

 

Figure 2 presents, in the left panel, an example of a scatter plot of the maximum temperature 

in CWS and AWS in station number 558, Evora, and, in the right panel, the correspondent 

histogram. In Evora, as seen in most of the cases inspected, the regression line as an almost 

1:1 slope. The histogram shows a slight tendency for the AWS to be colder than CWS for the 

lower range of temperatures and the reverse tends to happen for upper range. Careful 

inspection of similar plots for all the stations did not reveal any clear regional pattern of 

differences. We cannot rule out the possibility of smaller spatial patterns for the differences, 

not detectable with current station density. 

 

In several cases a seasonal pattern was identified, such as the one presented in Figure 3. The 

box-plot diagrams per class of values, displayed in Fig. 4, show a clear dependency on the 

temperature range of the AWS-CWS differences. This was a common result for temperature 

data. 

 

To objectively characterize the differences AWS-CWS a statistical approach was made. The 

following analysis shows the percentage of the statistical tests that confirmed that AWS and 

CWS series are not, in most cases, significantly different. Table 2 summarizes, for the 3 

temperature parameters, the differences AWS-CWS in all stations, stratified in terciles. 

  

a.  b.  
Figure 2. Scatter plot of AWS and CWS Tmax series at station 558 (Evora) (a), and the 

correspondent distribution histogram (b) 
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Figures 3 and 4 display examples of the seasonal evolution of the differences and their 

dependency on classes of values,, respectively.  

In the T009 case, more than 50% of the bias values are on the 3
rd

 tercile, corresponding to 

positive values. On the other hand, minimum and maximum temperatures have the larger 

percentage values over the 2
nd

 tercile that correspond to the central values, near zero.  

In the statistical tests corresponding to overall monthly averages and monthly series, 

calculated when possible, the global results show, in more than 60% of the test values, 

differences between the overall monthly averages and the monthly data series of AWS and 

CWS that are not significant (Table 3). 

 
      Table 3. Percentage of non-significant differences of 

overall monthy average and monthly series at 99% 

significance level 

       Daily time series Montlhy time series 

       T009 Tmax Tmin T009 Tmax Tmin 

Table 2. Distribution of AWS-CWS 

differences in tercile values 

 Jan 87 83 93 96 92 100 

 Feb 87 90 93 95 93 100 

Var Nr.cases 1
st
 T 2

nd
T 3

rd
 T  Mar 90 93 97 100 96 100 

T009 30 23% 23% 53%  Apr 83 97 90 97 100 98 

Tmax 30 23% 43% 33%  May 83 97 100 98 100 100 

Tmin 30 30% 53% 17%  Jun 80 97 93 97 97 100 

      Jul 80 97 90 97 100 98 

      Aug 63 97 87 91 100 96 

      Sep 67 97 87 90 100 96 

      Oct 80 93 93 99 98 94 

      Nov 80 87 93 96 94 100 

      Dec 83 80 93 93 97 96 

 

Anomalies of the AWS and CWS with respect to the 1961-1990 monthly normals show a 

very similar behaviour of the two observation systems, i.e., the test values were 

rejected/accepted with similar threshold values. This fact is shown in Tables 4a to 4c. 

Table 4 reveals that that in the latest years, all the three studied temperatures have higher 

values than the 1961-1990 normals. This fact is shown by the larger number of significant 

  
Figure 3. Box-plot of the monthly percentiles 

of the differences of Tmin of station 579 

(Lisboa) 

Figure 4. Box and whiskers representation of  

of Tmin AWS-CWS differences by classes of 

values of station 543 (Viana do Castelo). 

Boxes represent the 25 to 75 percentile, 

whiskers at 5 and 95 percentile and the black 

line is the median 
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differences between AWS (CWS) and normals for positive anomalies (rejections of the 

hypothesis of statistical equal values). 

The following step was to test the differences for extreme values. Climatic indices (WMO 

Nr.100, 1983) such as the 10
th

 an 90
th

 percentiles of the minimum and maximum temperatures 

(TNpp and TXpp, 1961-1990 Normal values), the cold days (CD, Tmin<-10ºC), tropical 

nights (TN, Tmin>20ºC), warm days WD, Tmax>20ºC), summer days (SD, Tmax>25ºC), 

tropical days 1 (TD1, Tmax>30ºC) and tropical days 2 (TD2, Tmax>35ºC). 

We assessed if the proportion of days above or below the indices between AWS and CWS 

series was significantly different. Table 5 shows, for more than 90% of months, proportions 

are not significantly different at the 1% significance level. 
 

Table 4. Contingency tables with the number of rejected months of AWS and CWS series when 

compared with 1961-1990 Normal values: (a) T009, (b) Tmax and (c) Tmin 
 

  CWS 

a T009 Rej(-) 1 5 10 90 95 99 Rej(+) 

A
W

S
 

Rej(-) 68 9 4 9 3 0 1 0 

1 10 9 3 4 1 0 0 0 

5 4 4 4 6 6 1 0 1 

10 11 12 5 58 21 1 2 3 

90 3 6 5 64 115 8 16 15 

95 0 0 0 8 20 7 8 9 

99 1 1 0 5 34 10 10 20 

Rej(+) 1 3 1 10 39 17 64 307 
 

  CWS 

b Tmax Rej(-) 1 5 10 90 95 99 Rej(+) 

A
W

S
 

Rej(-) 24 2 0 1 1 0 0 0 

1 5 5 0 2 0 0 0 0 

5 0 3 2 5 0 1 0 0 

10 5 6 4 52 11 2 0 0 

90 1 2 0 31 72 3 10 9 

95 2 0 0 0 16 2 4 2 

99 0 0 0 3 14 14 20 12 

Rej(+) 0 0 0 1 10 4 24 154 
 

   

  CWS 

c Tmin Rej(-) 1 5 10 90 95 99 Rej(+) 

A
W

S
 

Rej(-) 42 7 1 2 0 0 0 0 

1 6 6 2 5 0 0 0 0 

5 0 3 3 9 0 0 0 0 

10 11 2 4 58 25 0 0 0 

90 3 4 1 10 80 14 10 2 

95 1 0 0 2 5 6 6 6 

99 1 0 0 4 3 1 16 20 

Rej(+) 1 0 0 1 3 1 5 133 
 

 
Table 5. Percentage of months that rejected proportions between AWS and CWS indices were 

significantly different at 1% confidence level 
 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

T
m

in
 

CD 100 100 100 100 100 100 100 100 100 100 100 100 

TN 100 100 100 100 100 100 100 97 100 100 100 100 

TN10 100 100 100 100 100 97 100 90 93 93 97 97 

TN90 97 97 97 100 100 97 100 100 97 97 100 100 

T
m

ax
 

WD 97 97 97 97 97 100 100 100 100 97 97 100 

SD 100 100 100 97 97 100 100 93 100 97 97 100 

TD1 100 100 100 97 97 97 100 100 97 100 100 100 

TD2 100 100 100 100 100 97 97 100 100 100 100 100 

TX10 97 93 100 97 100 100 97 97 97 93 93 97 

TX90 97 93 97 100 100 97 100 100 100 97 97 93 
 

 

In order to determine in an objective way the pattern of each difference, we devised an 

heuristic method to detect the existence of dependency of differences on classes of values. For 

each parameter, differences were stratified in classes of values and a box and whiskers 

representation created for each class (see Figure 4 as an example). In such a figure, a linear 

increase (decrease) with class of values can be idealized as a straight line with positive 

(negative) slope; ±σ/(xmax- xmin), where sigma, xmax, and xmin are, respectively, the sample 
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standard deviation, minimum value and maximum value. In the following we refer to this as 

the reference slope. Next we compute the linear fits to the dependency of each of the 10, 25, 

50, 75 and 90
th

 percentiles with class of values, obtaining in this way 5 slopes for each 

variable. If two of the absolute values of the slopes were higher the reference slope, the 

parameter difference was considered value-dependent. Tables 6a-b show the percentage of 

cases in which the slope value was higher than the reference slope, for positive values (+m) 

and negative values (-m). Table 6c, summarizes the absolute number of cases that are value-

dependent (Val) and non value-dependent (NVal). Overall, results from Table 6, suggest that 

the number of cases that are value-dependent (Val) are between 15 and 30% of the total 

number of cases. It is interesting to note, on panels (A) and (B) of Table 6, that the slopes of 

minimum and maximum temperatures have opposite sign.  

 
Table 6. (A) Percentage of negative slopes that are lower than the reference slope; (B) 

Percentage of positive slopes that are higher than the reference slope; (C) Absolute number of 

cases classified as value-dependent (Val) and non value-dependent(NVal) 
 

A  B  C 

-m p10 p25 p50 p75 p90 
 

+m p10 p25 p50 p75 p90   Val NVal 

T009 18 4 4 0 4 
 

T009 7 7 14 21 14  T009 6 22 

Tmax 4 0 0 0 0 
 

Tmax 14 18 18 21 25  Tmax 8 20 

Tmin 21 11 14 14 21 
 

Tmin 0 0 0 0 0  Tmin 5 23 

 

 

CONCLUSIONS 

Overall, for meteorological surveillance and monthly reporting, the main operational use of 

data at IM, the differences between AWS and CWS are not significant. Most of the tests 

reveal that for daily or monthly data, differences are acceptable and do not compromise 

continuity of the data series. We identified patterns on some of the differences shown, which 

can lead to a statistical or algorithm correction. The value-dependent differences are very 

likely related to exposure factors such as the effect of the different type of shelters/screens 

used to cover the AWS and CWS sensors (Perry et al, 2007). 

Nevertheless, if the goal is to study long series of data, its extremes and tendencies, the raw 

data needs to be corrected prior to the merge of the time series. 
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INTRODUCTION 

Extreme climate indices calculations require at least daily resolution of homogeneous time 

series. In many cases the characteristics of the estimated linear trends are unambiguously 

unlike on the original and homogenized time series. It is a frequent occurrence that the sign of 

the slope implies decreasing or increasing on the data with artificial breaks, while the fitted 

trend to homogenized data implies adverse character.  

The ECA&D indices and some other special temperature and precipitation indices of our own 

development were built in to the Climate Database of the Hungarian Meteorological Service. 

Long term daily maximum, minimum temperature and daily precipitation sums series were 

homogenized and the climate indices series based on daily data has been derived and analyzed 

for the period 1901-2007. The extreme climate indices calculation results and the fitted linear 

trend statistics were tested on the original as well as on the homogenized daily data series. 

The differences are exposed in this paper. 

 

DATA AND METHOD 

Deriving the extreme climate indices the gaps in the data series and the inhomogeneities 

caused problems. Therefore the homogenization of observation series is crucial to get correct 

consequences on changes of extremes. 

The necessity of homogenization is demonstrated in Figs. 1 and 2 which show the annual 

number of frost days (daily minimum temperature < 0°C) for Szeged station in original and 

the homogenized daily minimum temperatures. Both the magnitude and the sign of the 

estimated linear trend are different in the two cases. 

 

 
Figure 1. Annual number of frost days with the ten-years moving average for Szeged station in the period 

of 1901-2007 using the original data 
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Figure 2. Annual number of frost days with the ten-years moving average for Szeged station in the period 

of 1901-2007 using the homogenized data 

 

The computations implemented in this work are based on long term daily data in the period of 

1901-2007. Daily maximum and minimum temperatures of 15 observation stations and daily 

precipitation sum of 58 precipitation stations were taken into account in the analysis. In the 

preparation phase the homogenization and quality control of the daily measurements were 

carried out. The homogenization of daily data was performed with the procedure MASH 

(Multiple Analysis of Series for Homogenization) (Szentimrey, 1999).  

 

The main features of MASHv3.02 (Szentimrey, 2007) 

 

The software consists of two parts.  

Part 1: Quality control, missing data completion and homogenization of monthly series:  

Relative homogeneity test procedure. 

Step by step procedure: the role of series (candidate or reference series) changes step by step 

in the course of the procedure. 

Additive (e.g. temperature) or multiplicative (e.g. precipitation) model can be used depending 

on the climate elements. 

Providing the homogeneity of the seasonal and annual series as well. 

Metadata (probable dates of break points) can be used automatically. 

Homogenization and quality control (QC) results can be evaluated on the basis of verification 

tables generated automatically during the procedure. 

Part 2: Homogenization of daily series: 

Based on the detected monthly inhomogeneities.  

Including quality control (QC) and missing data completion for daily data. The quality control 

results can be evaluated by test tables generated automatically during the procedure. 

 

VERIFICATION OF THE HOMOGENIZATION RESULTS AND QUALITY 

CONTROL 

 

During the execution of MASH procedure the quality control and homogenization test results 

e.g. detected errors, degree of inhomogeneity, number of break points, estimated corrections 

and certain verification results are documented in the automatically generated tables which 

make the evaluation efficient. The Tables 1-3 contains the homogeneity test results for the 

different meteorological elements which were analyzed in this work. In the case of daily 

minimum temperature series the degree of inhomogeneity of the stations are high values, 
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multiples of the critical value even in average. The test statistics proximate the critical value 

after homogenization (Table 1.). Lower but still high degree of inhomogeneity is typical of 

the daily maximum temperatures (Table 2.). The MASH procedure reduced the test statistics 

in the case of daily maximum temperatures substantially. The inhomogeneity of the raw 

precipitation data series is less, although the MASH procedure more decreased the test 

statistics (Table 3.).  
 

       

Table 1. Test results for daily minimum temperatures 
 

VERIFICATION OF HOMOGENIZATION (MINIMUM) 

 

TEST STATISTICS for ANNUAL SERIES (OUTPUT of MASH) 

Critical value (significance level 0.05): 21.73 

 

Test Statistics Before Homogenization(TSB)            

Station     TSB     Station     TSB     Station     TSB  

    5    2024.83       12    1232.54       13     843.11 

   10     735.77        3     644.61       15     631.40 

    6     617.90        1     579.59        2     496.33 

    7     438.06        8     390.13       11     384.80 

    4     317.23       14     309.52        9      99.56 

AVERAGE:649.69 

  

Test Statistics After Homogenization(TSA)  

Station     TSA     Station     TSA     Station     TSA 

   14      36.56        2     35.15        13      31.27 

    4      30.55        1     30.02         8      29.43 

    9      28.10        5     27.74         3      24.01 

    6      23.30        7     22.87        10      22.37 

   12      22.09       15     21.68        11      17.68 

AVERAGE: 26.85 

 

 

Table 2. Test results for daily maximum temperatures 

 
VERIFICATION OF HOMOGENIZATION (MAXIMUM) 

 

TEST STATISTICS for ANNUAL SERIES (OUTPUT of MASH) 

Critical value (significance level 0.05): 21.73 

 

Test Statistics Before Homogenization(TSB)   

Station     TSB     Station     TSB     Station     TSB    

   12    1106.40        6    1031.97        5     488.03 

    8     360.65       13     314.53        7     311.95 

   11     284.94       10     206.09        1     158.15 

   14     145.63        4     135.56        2     133.73 

   15     130.89        9      79.72        3      46.26 

AVERAGE:328.97 

 

Test Statistics After Homogenization(TSA)  

Station     TSA     Station     TSA     Station     TSA  

    1      60.91        7     49.90         5      44.96 

    2      44.82       14     34.28         8      32.99 

    6      31.73        9     28.31        11      25.28 

   10      22.59        3     21.89        13      21.44 

   15      21.21        4     20.36        12      19.39 

AVERAGE: 32.00 

 

 



 103 

 

Table 3. Test results for daily precipitation  

 
VERIFICATION OF HOMOGENIZATION (PRECIPITATION) 

 

TEST STATISTICS for ANNUAL SERIES (OUTPUT of MASH) 

Critical value (significance level 0.05): 21.73 

 

Test Statistics Before Homogenization(TSB)       

Station     TSB     Station     TSB     Station     TSB    

   13     175.11       10    170.34        27     137.97 

   17     110.87        3     81.79        20      80.32 

    4      76.88       18     60.28         1      59.43 

   56      17.15       36     15.07        24      11.06 

AVERAGE: 43.10 

 

Test Statistics After Homogenization(TSA)   

Station     TSA     Station     TSA     Station     TSA 

    2      66.34       18      59.33       37      54.23 

   58      51.60       20      51.54       51      48.02 

    1      44.91       44      43.98       52      43.85 

    8      15.27       56      14.62       36      12.82 

AVERAGE: 29.13 

 

The quality control part of the MASH demonstrates the detected errors. The Table 4 points a 

rough error in May 1941 on Kecskemét station.  These very low daily maximum values 

appear as extremes in the original data. Extreme high daily minimum temperatures were 

registered in the climatological database in Túrkeve station to the date 18-19 February 1907 

(Table 5.). The MASH quality control part detected the mistaken daily data. In case of 

precipitation we present only the summary of results in the Table 6. 

   
Table 4. Quality Control results of daily maximum temperatures  
 

Maximum temperature (1901-2007) 

Result of automatic Quality Control By MASH 

Total number of errors:     3319 

Maximal positive error:    12.35 

Minimal negative error:   -20.91 

Example: Kecskemét(46401), 26-31 May 1941 

 

          48101  47100  46401  58104  55706  64704  44121 

1941 525   22.4   24.6   26.0   24.6   24.8   24.2   25.3 

1941 526   23.9   23.8    2.4   24.0   24.0   23.8   25.6 

1941 527   24.2   24.2    2.4   25.6   23.3   23.8   22.8 

1941 528   26.9   26.6    2.7   28.2   26.7   25.4   27.8 

1941 529   25.8   24.0    2.4   27.0   26.5   24.6   24.2 

1941 530   24.7   24.6    2.5   25.5   24.0   22.4   23.8 

1941 531   25.0   25.2    2.7   26.5   25.8   25.4   25.9 

1941 6 1   22.1   21.5   21.0   19.7   17.6   18.8   22.8 

 

Table 5. Quality Control results of daily minimum temperatures  
 

Minimum temperature (1901-2007) 

Result of automatic Quality Control by MASH 

Total number of errors:     2058 

Maximal positive error:    14.03 

Minimal negative error:   -10.55 

Example: Túrkeve(55706), 18-19 February 1907 

 

          48101  47100  46401  58104  55706  64704  44121 
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1907 217   -9.0  -13.0  -16.4  -10.8  -15.0  -17.9 -10.50 

1907 218   -6.0   -5.1  -10.0   -3.9    5.0   -7.2  -5.50 

1907 219   -1.5   -2.5   -6.4   -4.6   10.6  -13.2  -0.60 

1907 220   -1.0   -1.5   -2.4   -0.1   -0.2   -1.9  -0.40 

 

Table 6. Quality Control results of daily precipitation sum  

Precipitation (1901-2007) 

Result of automatic Quality Control by MASH 

Total number of errors:      854 

Maximal positive error:     84.0 

Minimal negative error:    -33.4 

 

CLIMATE INDICES  
Extreme climate indices calculation started in the frame of project named „Regional Climate 

Modeling” 2005 – 2007 (NKFP-3A/082/2004, National Office for Research and Technology) 

in Hungary. The index definitions mainly are based on the ECA&D and Climdex definitions. 

The indices listed in the Table 7-9 were calculated in the climate database of The Hungarian 

meteorological Service. All of them were derived on original as well as on homogenized, 

quality controlled and complemented daily data. The changes raised in the extreme index 

series are estimated by linear trend fitting in three, partly overlapping time periods: 1901-

2007, 1961-2007 and 1976-2007. The longest period goes back to the beginning of the 20
th

 

century to detect long term changes; the period from the mid 20
th

 century turns up in IPCC 

reports, therefore that interval is analyzed. The last 30 years is chosen, because that is the 

most intense warming period, and it mostly characterizes the present climate. 

Table 7. Extreme warm temperature indices in the climate database of HMS 

Index/unit Warm extremes 

txx / °C absolute Tmax  

dtx25/day summer days Tmax > 25 °C  

dtx30e/day hot days Tmax ≥30 °C 

dtx35e/day very hot days Tmax ≥35 °C 

dtn20/day tropical nights Tmin > 20 °C  

ditxgnr/day heat wave duration index  

ditgnr90/day warm spell days 

itxgnr90/day maximum duration of warm spell  

TN90p /% Tmin > 90th percentile of normal period 

TX90/% Tmax > 90th percentile of normal period  

 
Table 8. Extreme cold temperature indices in the climate database of HMS 

Index/unit Cold extremes 

tnn/°C absolute Tmin  

dtn0/days frost days Tmin < 0°C 

itn0x/days maximum number of  frost days Tmin < 0°C 

t17s/°C heating degree days 

dtx0/day ice days Tmax < 0°C  

ditnlnr/day cold wave duration index  

ditlnr10/day cold spell days  

itnlnr10/day maximum duration of cold spell  

TN10p /% Tmin < 10th percentile of normal period  

TX10p /% Tmax < 10th percentile of normal period  
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Table 9. Extreme precipitation climate indices in the climate database of HMS 

Index/unit Precipitation  

rs/mm precipitation sum  

dr1/day number of wet days  

r1a/mm/day mean wet-day precipitation 

ir1xd/day length of longest dry period R <1 mm 

ir1xw/day length of longest wet period R ≥ 1 mm 

dr5/day number of days R ≥ 5 mm 

dr10 day number of days R≥ 10 mm 

dr20/ day number of days R≥ 20 mm 

rx1/mm naximum daily sum 

rx5/mm naximum sum in 5 days long period 

pr95gnr/% proportion of prec. days R> 95% of normal period in the total annual precipitation 

pr99gnr/% proportion of prec. days R> 99% of normal period in the total annual precipitation 

 

The estimation of trend values and testing of theirs significance are performed both on 

original while complemented data and on quality controlled, complemented and homogenized 

data. The MASH method was used for the data quality control, completion and for 

homogenization. In the Fig. 3 the changes of two indices based on daily minimum: TN10p 

(Tmin < 10th percentile of the 1961-1990 normal) and TN90p (Tmin > 90th percentile of 

1961-1990 normal) are shown. The significant changes on 0.9 confidence level are colored 

according to the sign of the slope. The coloration of the cells indicates the significant 

increasing (red) and decreasing (blue) trends on the original and on the homogenized data.  

The decreasing tendency is dominant in the case of index TN10p, but there is inexplicable 

increasing on Szeged station in all the examined period. Kecskemét and Debrecen also show 

increased values on the longest series from 1901-2007. The adverse characteristics of the 

changes are caused by the artificial breaks in the data series. The positive values are 

eliminated after homogenization. The less extremely cold days rather agree with the global 

changes. Similarly in the case of index TN90p the presence of the wrong data and 

inhomogeneites result significant decreasing on the stations Kecskemét, Szeged and Debrecen 

from the beginning of the 20
th

 century to 2007. The higher than the 90
th

 percentile minimum 

temperatures are reassuringly dominant at all the stations and period.  

 

 

  

TN10p orig 1901-2007 1961-2007 1976-2007

Sopron -15.5 -11.1 -4.5

Szombathely -0.5 -6.5 -6.7

Keszthely -1.3 -7.6 -4.7

Mosonmagyaróvár 2.3 2.6 0.4

Siófok -23.9 -7.7 -8.5

Pécs 1.2 -4.7 -5.2

Baja -11.6 -5.4 -7.6

Kalocsa -8.5 0.0 -2.7

Kecskemét 5.8 -2.0 -2.9

Szeged 6.1 9.4 8.2

Túrkeve -1.4 -14.0 -19.4

Miskolc -10.3 -5.2 -5.7

Debrecen 9.6 -0.6 -3.9

Nyíregyháza -9.8 -5.6 -7.3

Budapest -15.7 -4.9 -6.9

TN10p homogenized 1901-2007 1961-2007 1976-2007

Sopron -7.3 -6.3 -6.4

Szombathely -4.5 -5.3 -6.0

Keszthely -4.0 -2.8 -3.6

Mosonmagyaróvár -3.8 -3.3 -3.3

Siófok -7.8 -6.2 -7.7

Pécs -5.4 -4.9 -5.4

Baja -6.0 -3.8 -5.4

Kalocsa -5.6 -1.5 -4.4

Kecskemét -3.4 -2.0 -3.5

Szeged -2.2 0.0 -0.5

Túrkeve -5.1 -6.2 -11.4

Miskolc -6.7 -3.9 -5.7

Debrecen -2.5 -2.8 -5.3

Nyíregyháza -6.1 -4.3 -6.1

Budapest -6.2 -4.9 -6.6
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Figure 3. Percentage change of the original and homogenized extreme indices based on daily minimum 

temperature for 15 Hungarian stations in three different time intervals 

 

  

  
Figure 4. Percentage change of the original and homogenized extreme indices based on daily maximum 

temperature for 15 Hungarian stations in three different time intervals 

TN90p orig 1901-2007 1961-2007 1976-2007

Sopron 15.3 17.8 10.6

Szombathely 5.8 14.4 13.8

Keszthely 6.1 14.1 11.6

Mosonmagyaróvár -0.2 0.0 3.8

Siófok 21.0 16.5 17.4

Pécs -1.2 11.8 12.4

Baja 13.1 12.7 13.9

Kalocsa 9.0 8.0 11.5

Kecskemét -6.2 8.8 10.7

Szeged -3.9 -2.5 -1.0

Túrkeve 6.7 24.0 28.9

Miskolc 11.6 10.9 12.1

Debrecen -7.8 5.9 8.9

Nyíregyháza 10.0 9.6 11.8

Budapest 14.5 10.4 13.8

TN90p homogenized 1901-2007 1961-2007 1976-2007

Sopron 6.4 10.4 10.2

Szombathely 10.0 11.8 12.2

Keszthely 7.9 9.1 9.4

Mosonmagyaróvár 8.6 9.0 9.3

Siófok 8.0 13.8 15.4

Pécs 8.1 11.5 12.2

Baja 9.0 10.4 11.2

Kalocsa 7.1 9.4 13.0

Kecskemét 7.7 9.1 11.2

Szeged 8.6 10.5 11.0

Túrkeve 10.4 5.6 9.3

Miskolc 8.1 9.2 12.1

Debrecen 10.7 9.3 11.2

Nyíregyháza 6.3 6.7 9.0

Budapest 5.9 9.7 12.8

TX10p orig 1901-2007 1961-2007 1976-2007

Sopron -9.4 -8.1 -10.0

Szombathely -5.1 -8.2 -7.6

Keszthely -6.9 -5.2 -5.7

Mosonmagyaróvár -6.3 -4.4 -4.1

Siófok -4.3 -4.6 -5.0

Pécs -1.6 -4.5 -3.9

Baja -5.3 -1.9 -2.9

Kalocsa -5.7 -3.5 -7.4

Kecskemét -5.8 -4.2 -5.3

Szeged -8.7 -3.9 -5.7

Túrkeve -11.7 2.8 -3.1

Miskolc -7.3 -4.0 -6.8

Debrecen -6.2 -3.1 -5.0

Nyíregyháza -3.6 -2.4 -6.0

Budapest -5.0 -2.6 -6.1

TX10p homogenized 1901-2007 1961-2007 1976-2007

Sopron -5.9 -7.1 -8.9

Szombathely -4.8 -5.9 -6.2

Keszthely -5.1 -5.3 -5.6

Mosonmagyaróvár -5.5 -5.1 -4.8

Siófok -6.9 -6.0 -5.8

Pécs -4.2 -3.8 -4.2

Baja -5.7 -4.6 -5.7

Kalocsa -4.3 -3.6 -6.6

Kecskemét -5.2 -3.8 -5.7

Szeged -4.2 -4.1 -4.8

Túrkeve -3.6 -4.1 -8.8

Miskolc -3.6 -3.0 -6.3

Debrecen -4.4 -3.3 -5.2

Nyíregyháza -5.7 -4.3 -6.7

Budapest -5.1 -3.9 -7.8

TX90p orig 1901-2007 1961-2007 1976-2007

Sopron 11.4 13.0 14.3

Szombathely 9.4 12.9 12.7

Keszthely 7.9 9.9 12.1

Mosonmagyaróvár 5.7 10.3 10.7

Siófok -0.7 11.7 13.7

Pécs 2.7 10.5 9.2

Baja 5.6 8.5 8.3

Kalocsa 5.2 10.9 15.1

Kecskemét 4.6 11.0 10.9

Szeged 10.7 11.3 13.6

Túrkeve 6.0 0.9 7.0

Miskolc 6.5 10.0 12.0

Debrecen 7.0 8.1 8.7

Nyíregyháza 0.8 7.7 12.4

Budapest 3.5 6.9 9.5

TX90p homogenized 1901-2007 1961-2007 1976-2007

Sopron 8.8 11.3 13.0

Szombathely 8.7 10.0 10.7

Keszthely 7.1 9.8 12.0

Mosonmagyaróvár 5.5 11.3 12.1

Siófok 2.4 12.8 14.8

Pécs 5.9 9.9 9.3

Baja 7.2 12.1 12.8

Kalocsa 4.1 10.9 14.3

Kecskemét 4.4 9.9 10.7

Szeged 7.5 11.8 12.3

Túrkeve 6.0 9.2 14.6

Miskolc 4.0 8.5 11.2

Debrecen 5.3 8.3 9.1

Nyíregyháza 3.3 9.8 13.0

Budapest 4.3 8.8 12.1
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In the Fig. 4 the changes of the indices TX10p and TX90p are shown. Both of them are 

calculated with using daily maximum temperatures. The differences between original and 

homogenized changes are less apparent than in Fig. 3, but the necessity of homogenization is 

obvious.  

The columns in the Fig. 5 indicate also the degree and the trend of the indices which 

were examined in this study. Note that in many cases not only the degree but the sign of the 

estimated trend are discrepant. The diagrams are consistent with the test statistics introduced 

in the section 3. The degree of inhomogeneity of the indices based on daily minima is large, 

especially in the periods 1901-2007, but artificial breaks also were founded in the subsequent 

periods. 

 
Figure 5. Comparative chart of the change arise in the series of TN10p and TN90p extreme climate indices 

for 15 Hungarian stations in three different time intervals 

The precipitation is more variable climatological element than the temperature in time and in 

space as well. The extreme precipitation index which were examined in this paper is the 

proportion of precipitation days R> 95% of the 1961-1990 periods in the total annual 

precipitation (R95pTOT). The variability is manifested in Fig 6. which contains the changes 

of R95pTOT in the examined periods. The significant tendencies confirm that the fraction of 

the short term precipitation in the yearly sum is increased near to the present, but the measure 

of the changes is variant. The differences of the fitted original trend and homogenized trend 

are not so obvious than in the case of temperature. It follows from the fact that the MASH 

procedure is more cautious in the case of precipitation data.  
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Figure 6. Changes of R95pTOT extreme precipitation index for 58 Hungarian stations in three different 

time intervals 

CONCLUSION 

The majority of long data series is inhomogeneous, and often contains shifts in the mean or in 

the variance due to site-relocations, changes in instrumentation or in observing practices. 

Amongst the observation series there are good quality data as well, but sorting them out 

requires the execution of a homogenization procedure first. Neglecting the inhomogeneous 

series causes a huge loss of valuable information. Long term daily maximum, minimum 

R95pTOT (%) homo orig homo orig homo orig

1901-2007 1901-2007 1961-2007 1961-2007 1976-2007 1976-2007

Sopron -0.3 -1.0 3.3 3.2 6.9 6.8

Fertőszentmiklós 2.1 2.0 0.3 0.5 7.3 7.2

Szombathely 4.2 1.3 -0.4 -0.4 0.4 0.6

Felsőszölnök 3.0 -3.2 -0.9 -0.9 -3.1 -3.1

Mosonmagyaróvár -3.3 -1.5 -2.7 -2.1 9.3 9.9

Ravazd 1.2 -2.8 1.5 1.6 6.7 6.8

Pér 3.3 3.1 2.5 3.6 -0.1 0.0

Beled 1.7 2.1 -1.8 -0.9 6.8 8.1

Bakonyszentkirály 0.5 2.0 2.6 2.8 10.1 10.3

Kemenesszentmárton -0.5 2.3 -3.9 -5.5 4.7 4.2

Kerta 1.2 0.7 -7.3 -7.3 5.7 5.6

Bakonybél 4.2 4.1 1.1 1.3 10.9 11.0

Városlőd 0.9 4.1 -1.0 3.9 4.3 6.0

Herend -3.5 -2.7 -1.8 -1.9 0.7 0.6

Türje 0.8 0.5 -6.0 -6.1 3.7 3.6

Sümeg 0.7 0.6 -3.2 -3.2 6.2 6.0

Nagyvázsony 1.2 -2.8 -2.2 -2.3 3.4 3.4

Keszthely -1.2 -0.8 1.3 1.8 1.7 1.0

Balatonkeresztúr -5.2 -4.1 1.7 2.4 2.3 3.0

Marcali 3.9 5.8 -0.3 -0.3 6.0 6.1

Mernye 8.5 8.4 1.2 1.2 6.6 7.3

Iharos -6.6 -6.9 -5.1 -5.1 -3.0 -3.0

Rinyakovácsi -4.2 -4.7 -1.4 -1.2 -0.7 -0.5

Márianosztra 1.8 1.8 -2.7 -2.6 7.2 7.3

Kápolnásnyék -6.2 -6.7 1.5 1.5 5.1 5.1

Balatonalmádi -2.2 -3.9 -6.0 -7.9 -8.5 -8.4

Siófok 1.5 0.8 2.6 2.2 0.6 0.4

Tab -0.9 -0.6 -0.5 1.0 2.8 3.6

Pincehely -0.6 -0.6 4.7 4.5 19.3 19.3

Tengelic 3.1 4.5 5.6 6.1 9.3 9.8

Gölle -2.6 -1.6 -1.8 -2.1 13.5 13.5

Szálka 13.3 13.7 4.0 4.2 11.0 11.1

Pécs 6.5 5.0 6.1 6.1 12.2 12.0

Pásztó -3.7 -0.7 -2.8 -2.4 3.9 4.4

Budapest 1.8 1.6 1.1 1.1 4.4 4.2

Tápiószele 0.4 0.7 -0.2 0.0 2.1 2.6

Kecskemét-kült -0.9 -1.0 3.5 4.0 6.8 7.8

Kalocsa Öregcsertő 2.6 2.4 4.1 3.8 15.4 14.3

Baja 1.4 1.3 4.7 4.2 14.7 14.9

Felsőszentiván 6.4 5.7 3.7 2.2 14.9 15.0

Miskolc -0.2 0.4 2.0 1.4 5.0 5.5

Bogács -3.8 -3.9 0.3 0.3 3.1 3.1

Poroszló -1.7 0.4 0.4 0.0 6.9 3.0

Fegyvernek -5.3 -5.4 -6.3 -7.2 -4.7 -4.6

Túrkeve 8.9 8.8 8.7 8.8 13.3 13.5

Cibakháza 1.2 0.5 4.9 4.9 1.9 1.9

Kunszentmárton 3.3 4.2 -2.1 -2.2 3.0 3.2

Kondoros 5.7 5.5 0.5 0.9 6.9 7.6

Szeged 1.5 1.1 3.9 4.6 1.3 2.1

Karcsa 3.2 2.5 3.1 3.4 -0.7 -1.9

Nyíregyháza 1.6 1.2 3.5 3.5 7.9 7.7

Téglás Hadháztéglás 5.3 3.0 9.1 9.5 7.0 7.3

Hajdúszoboszló 8.4 7.7 4.1 4.2 5.9 6.0

Debrecen 7.7 7.2 6.2 6.7 6.5 6.8

Méhkerék 9.9 11.1 8.2 8.2 -0.8 -1.0

Battonya 4.6 4.5 1.3 1.3 5.6 5.7

Nyírmada 3.1 3.0 4.6 4.6 -0.2 -0.2

Vásárosnamény 7.9 7.6 0.3 1.5 3.4 3.4
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temperature and daily precipitation sums series were homogenized and the extreme climate 

indices series were derived and analyzed in the period of 1901-2007, 1961-2007 and 1976-

2007 in this paper. In many cases the changes of indices series according to original data and 

homogenized data implies adverse character. According to our investigations the importance 

of homogenization is undeniable in climate change studies.  
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PROGRAMME 

BUDAPEST, HUNGARY 

26 – 30 MAY 2008 

Venue: 

The Headquarters of the Hungarian Meteorological Service (1 Kitaibel Pál street, Budapest) 

Monday, 26 May  

 

8:30-9:30 Registration 

 

9:30-12:00 

 Openning addresses by  

          the President of HMS 

          the Organizers 

Introduction about COST HOME 

Monday is dedicated to specific results obtained within COST HOME 

WG1:  

Aguilar, E. (SE): Results of WG1, Bibliography 

Venema, V. (DE): Results of WG1, Benchmark dataset 

Lunch break 

13:30-18:00 

WG2-3: 

Mestre, O., Domonkos, P., Lebarbier, P., Picard, F., Robin, S. (FR, HU): 

Comparison of change-point detection methods in the mean of Gaussian processes 

Prohom, M. (ES): Steps followed to create a climate dataset for Catalonia and 

Andorra (18
th

-21
st
 centuries). Analysis of Catalan, Andorran and French temperature 

series from the early 20
th

 century to the present using different homogenisation 

approaches 

Menne, M. (US): Automated Homogenization of Monthly Temperature Series via 

Pairwise Comparisons 

Szentimrey, T. (HU): Methodological questions of series comparison  

WG4: 

Gruber, C., Auer, I. (AT): Comparison of daily homogenization methods using parallel 

measurements for evaluation  

Stepanek, P.,Zahradníĉek, P. (CZ): Experiences with homogenization of daily and 

monthly series of air temperature, precipitation and relative humidity in the Czech 

Republic, 1961-2007 

18:00 Welcome party 
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Tuesday, 27 May  

 

9:00-17:00 

WG2-3 Round Table and presentations, discussions(with participation of non Cost members): 

Jourdain, S., Mestre, O. (FR): Use and misuse of absolute homogeneity tests 

Grimvall, A., Sirisack, S., Burauskaite-Harju, A., Wahlin, K. (SE): Unifying mixed linear 

models and the MASH algorithm for breakpoint detection 

Brázdil, R., Stepanek, P., Macková, J. (CZ): Homogenisation of Brno climatic series 1799-

2007: Example of the use of early instrumental records 

Venema, V., Mestre, O., Rust, H.W. (DE, FR): Inhomogeneities in temperature records 

deceive long-range dependence estimators 

Domonkos, P. (HU): Quantifying efficiency of homogenisation methods  

Guijarro, J.A. (ES): Climatol 2: Interactive and automatic R functions for homogenisation 

of climatological series 

Bari, B. (MA): Breakpoints detection in Temperature Time Series in Morocco using the 

Ellipse Test 

Lizuma, L., Protopopova, V., Briede, A. (LV): Experience regarding detecting 

inhomogeneities in temperature time series using MASH 
 
Lunch break: 12:00-13:30 

 
 
Wednesday, 28 May 

 

9:00-12:00 

WG4 Round Table and presentations, discussions (with participation of non Cost 

members): 

Stepanek, P., Zahradníĉek, P. (CZ): Quality control of daily data on example of Central 

European series of air temperature, relative humidity and precipitation 

Aguilar, E., Brunet, M., Sigró, J. (ES): Different approaches for the homogenisation of the 

Spanish Daily Temperature Series 

Brandsma, T. (NL): Understanding inter-site temperature differences at the KNMI terrain 

in De Bilt (the Netherlands) 

Petrović, P., Curley, M. (RS, IE): Detected Inhomogeneities In Wind Direction And Speed 

Data From Ireland 

 

Lunch break 

 

 

13:30-18:00 

Management Committee of COST HOME 

 

 

 

19:00 Seminar banquet 
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Thursday, 29 May  

 

9:00-12:00 

Vertaĉnik, G. (SI): A method for daily temperature data interpolation and quality control 

based on the selected past events 

Li, Z. and co-authors (CN): Effects of site-change and urbanisation in the Beijing 

temperature series 1977-2006 

Wypych, A., Piotrowicz, K. (PL): Air humidity in Cracow (Poland) in the period 1863-

2007 – daily data quality control and homogenization methods 

Brzóska, B. (PL): Homogenization of water vapour data from Vaisala radiosondes and 

older (MARZ, RKZ) used in Polish aerological service  

Toreti, A., Desiato, F., Fioravanti, G., Perconti, W. (IT): Homogenization of Italian 

precipitation series 

 

 

Lunch break 

 

 

13:30-17:00 

Cheval, S., Szentimrey, T., Manea, A. (RO, HU), : Homogenization of monthly 

temperature series in Romania (1901-2005) using metadata 

Wieczorek, A.M., Jourdain, S., Desmaizières, L., Grimal, D., Tamburini, A. (FR): Monthly 

Air Temperature Homogenization over France 

Rasol, D., Likso, T., Milkovic, J. (HR): Homogenisation of temperature time series in 

Croatia 

Mendes, M., Neto, J., Silva, Á., Nunes, L., Viterbo, P. (PT): Characterization of data sets 

for the assessment of inhomogeneities of climate data series, resulting from the 

automation of the observing network in Mainland Portugal 

Adamczyk, R., Lupikasza, E. (PL): Comparison of re-analysis gridded and station 

cloudiness data over Europe 

Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S. (HU): Homogenization of daily data 

series for extreme climate indeces calculation 

 
Friday, 30 May 
Excursion to Hollókő 

Meeting point: HMS, 1, Kitaibel P. street at 7:45 
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LIST OF PARTICIPANTS 

 

AUSTRALIA 

ROGER STONE 

University of Southern Queensland 

stone@usq.edu.au 
 

AUSTRIA 

INGEBORG AUER 

Zentralanstalt für Meteorologie und 

Geodynamik 

ingeborg.auer@zamg.ac.at 
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Zentralanstalt für Meteorologie und 

Geodynamik 

christine.gruber@zamg.ac.at 
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leopold.haimberger@univie.ac.at 
 

BULGARIA 

TANIA MARINOVA 

National Institute of Meteorology and 

Hydrology, Bulgarian Academy of 
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Tania Marinova@meteo.bg 
 

ALEXANDROV VESSELIN 

Vesselin.Alexandrov@meteo.bg 
 

CHINA 

LI ZHEN 

Institute of Atmospheric Physics 

lizhen@tea.ac.cn 
 

CROATIA 

TANJA LIKSO 

Meteorological and Hydrological Service 

of Croatia 

likso@cirus.dhz.hr 
 

 

JANJA MILKOVIĆ 

Meteorological and Hydrological Service 

of Croatia 

milkovic@cirus.dhz.hr 

 

DUBRAVKA RASOL 

Meteorological and Hydrological Service 

of Croatia 

rasol@cirus.dhz.hr 
 

ANA ŃANTIĆ 

Meteorological and Hydrological Service 

of Croatia 

santic@cirus.dhz.hr 
 

CZECH REPUBLIC 

RUDOLF BRÁZDIL 

Institute of Geography, Masaryk 

University, Brno 

brazdil@geogr.muni.cz 
 

PETR ŃTĚPÁNEK 

Czech Hydrometeorological Institute 

petr.stepanek@chmi.cz 
 

CYPRUS 

FOKIANOS KONSTANTINOS 

fokianos@ucy.ac.cy 
 

FINLAND 

TIETAVAINEN HANNA 

hanna.tietavainen@fmi.fi 
 

HEIKKI TUOMENVIRTA 

heikki.tuomenvirta@fmi.fi 
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FRANCE 

VALERIE DAUX 

Valerie.Daux@cea.fr 
 

OLIVIER MESTRE 

Météo-France 

olivier.mestre@meteo.fr 
 

ANNE-MARIE WIECZOREK 

METEO-FRANCE 

anne-marie.wieczorek@meteo.fr 
 

GERMANY 

VICTOR VENEMA 

Meteorologisches Institut Universitaet 

Bonn 

Venema@uni-bonn.de 
 

GERHARD MÜLLER-WESTERMEIER 

Deutscher Wetterdienst 

Gerhard.mueller-westermeier@dwd.de 
 

GREECE 

ATHANASSIOS ARGIRIOU 

athanarg@upatras.gr 
 

GEORGE KALOGERAS 

Hellenic National Meteorological Service 

gkalogeras@hnms.gr 

HUNGARY 

ZITA BIHARI 

Hungarian Meterological Service 

bihari.z@met.hu 
 

PETER DOMONKOS 

dopeter@t-online.hu 
 

MÓNIKA LAKATOS 

Hungarian Meterological Service 

lakatos.m@met.hu 
 

SÁNDOR SZALAI 

Hungarian Meterological Service 

szalai.s@met.hu 
 

TAMÁS SZENTIMREY 

Hungarian Meterological Service 

szentimrey.t@met.hu 

IRELAND 

SEAN BONNER 

Met Éireann 

bonner@met.ie 
 

MARY CURLEY 

Met Éireann 

mary.curley@met.ie 
 

MICHAEL MCDONNELL 

Met Éireann 

michael.mcdonnell@met.ie 
 

PROF. JOHN SWEENEY 

Department of Geography 

National University of Ireland, Maynooth   

John.Sweeney@nium.ie 
 

ITALY 

FIORELLA ACQUAOTTA 

University of Turin 

fiorella.acquaotta@unito.it 
 

MICHELE BRUNETTI 

Institute of Atmospheric Sciences and 

Climate, Bologna 

m.brunetti@isac.cnr.it 
 

SIMONA FRATIANNI 

University of Turin 

simona.fratianni@unito.it 
 

MAURIZIO MAUGERI 

maurizio.maugeri@unimi.it 
 

TERESA NANNI 

t.nanni@isac.cnr.it 
 

SILVIA UGHETTO 

CNMCA-ITALY 

ughetto@meteoam.it 
 

ANDREA TORETI 

APAT / UNIBERN 

toreti@apat.it 
 

LATVIA 

ARGITA BRIEDE 

Agrita.Briede@lu.lv 
 

LITA LIZUMA 
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Latvian Environment, Geology and 

Meteorology Agency 

lita.lizuma@lvgma.gov.lv 
 

MOROCCO 

DRISS BARI 

Chef Adjoint du Service de Banque de 

données et Climatologie Direction 

Régionale Météorologique du Centre 

Casablanca 

bari.driss@gmail.com 
 

NETHERLANDS 

THEO BRANDSMA 

Royal Netherlands Meteorological Institute 

Theo.Brandsma@knmi.nl 
 

ALBERT KLEIN TANK 

Royal Netherlands Meteorological Institute 

kleintan@knmi.nl 

NORWAY 

LARS ANDRESEN 

Norwegian Meteorological Institute 

larsa@met.no 
 

OYVIND NORDLI 

Norwegian Meteorological Institute 

oyvind.nordli@met.no 
 

POLAND 

ROMANA ADAMCZYK 

University of Silesia, Faculty of Earth 

Sciences, Department of Climatology 

r_adamczyk@op.pl 
 

 

BARBARA BRZÓSKA 

Institute of Meteorology and Water 

Management Centre of Aerology 

Barbara.Brzoska@imgw.pl 

basik@igf.fuw.edu.pl 
 

JANUSZ FILIPIAK 

University of Gdansk 

geojf@univ.gda.pl 
 

EWA ŁUPIKASZA 

University of Silesia, Faculty of Earth 

Sciences, Department of Climatology 

ewa.lupikasza@us.edu.pl 
 

MIROSLAW MIETUS 

miroslaw.mietus@imgw.pl 
 

KATARZYNA PIOTROWICZ 

Institute of Geography and Spatial  

Management, Jagiellonian University  

k.piotrowicz@geo.uj.edu.pl 
 

ZSUZSANNA VÍZI 

Nicolaus Copernicus University 

vizi@uni.torun.pl 
 

AGNIESZKA WYPYCH 

Institute of Geography and Spatial 

Management, Jagiellonian University 

awypych@geo.uj.edu.pl 
 

PORTUGAL 

MANUEL MENDES 

Instituto de Meteorologia 

manuel.mendes@meteo.pt 
 

ANA MONTEIRO 

anamonteirosousa@gmail.com 
 

LUIS NUNES 

Instituto de Meteorologia 
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ROMANIA 

CONSTANTA BORONEANT 

boroneant@meteo.inmh.ro 
 

SORIN CHEVAL 

sorincheval@fulbrightweb.org 
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PREDRAG PETROVIĆ 

Republic Hydrometeorological Service of 

Serbia 
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SLOVAKIA 

OLIVER BOCHNÍĈEK 

Slovak Hydrometeorological Institute 

oliver.bochnicek@shmu.sk 
 

 

PETER KAJABA 
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peter.kajaba@shmu.sk 
 

JOZEF PECHO 
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MIHA DEMŃAR 

University of Ljubljana, Faculty of 

Mathematics and Physics 

miha.demsar@gov.si 
 

GREGOR VERTAĈNIK 

Environmental Agency of the Republic of 

Slovenia 

gregor.vertacnik@gov.si 
 

SPAIN 

ENRIC AGUILAR 

University Rovira i Virgili de Tarragona 

enric.aguilar@urv.cat 
 

JOSÉ ANTONIO GUIJARRO 

Agencia Estatal de Meteorología 

jaguijarro@inm.es 
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Linköping University 
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Oeschger Centre for Climate Change 
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For more information, please contact:

World Meteorological Organization

Observing and Information Systems Department
Tel.: +41 (0) 22 730 82 68 – Fax: +41 (0) 22 730 80 21

E-mail: wcdmp@wmo.int 

7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland

www.wmo.int


